Е магнитное поле прямого проводника с током. Магнитное поле

Презентация к уроку физики по теме " Магнитное поле. Магнитное поле прямого проводника. Магнитные линии" 8 класс. Учебник А.В. Перышкин. М.: Дрофа, 2013

Данный материал позволяет сформировать у обучающихся научное представление о магнитном поле. Идет выдвижение гипотезы и ее обоснование, поиск и выделение необходимой информации при работе с учебником, установление причинно-следственных связей при проведении опыта,выделение и осознание обучающимися того, что уже усвоено и что еще необходимо усвоить, осознание качества и уровня усвоения материала (тестирование и взаимопроверка)

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Сорокина Ольга Адольфовна учитель физики и математики ГОКУ АО «Общеобразовательная школа при учреждениях исполнения наказания»

Магнитное поле

Во всём мне хочется дойти До самой сути. В работе, в поисках пути, В сердечной смуте До сущности протекших дней, До их причины, До оснований, до корней, До сердцевины. Б. Пастернак

Гипотеза Вокруг любого проводника с током, т.е. движущихся электрических зарядов, существует магнитное поле Ток следует рассматривать как источник магнитного поля! Цель: формирование представления о магнитном поле

● установить связь между электрическим током и магнитным полем, ● дать понятие магнитных линий, ● описать магнитное поле прямого тока с помощью магнитных линий Задачи

Чтобы нам продолжить путь, Надо знанья почерпнуть Мы тетради открываем И магнитное поле изучаем N S

Опыт Эрстеда Взаимодействие проводника с током и магнитной стрелки Цель опыта: пронаблюдать взаимодействие проводника с током и магнитной стрелки Оборудование: источник тока, ключ, реостат, соединительные провода, толстый прямой проводник, магнитная стрелка на подставке Ход работы: собрать электрическую цепь. Расположить под прямым проводником магнитную стрелку и дать ей успокоиться. Замкнуть ключ.

Опыт Эрстеда Почему повернулась стрелка?

Ханс Кристиан Эрстед 1777 - 1851 датский физик, непременный секретарь Датского королевского общества (с 1815). Окончил Копенгагенский университет (1797). С 1806 года - профессор этого университета, с 1829 года одновременно директор Копенгагенской политехнической школы. Работы Эрстеда посвящены электричеству, акустике, молекулярной физике. В 1820 году он обнаружил действие электрического тока на магнитную стрелку. Это привело к возникновению новой области физики - электромагнетизма

Что доказывает опыт Эрстеда? Имеет ли значение, где помещена стрелка: под или над проводником? 3. Влияет ли на результат опыта величина силы тока в проводнике? 4. Что изменится, если поменять полярность полюсов источника тока? 5. Как лучше ориентировать проводник для наибольшего отклонения стрелки? Ответьте на вопросы

Магнитное поле порождается только движущимися зарядами, в частности электрическим током В отличие от электрического поля магнитное поле обнаруживается по его действию на движущиеся заряды (движущиеся заряженные тела) Магнитное поле, как и электрическое поле, материально, т.к. оно действует на тела, и следовательно, обладает энергией Магнитное поле обнаруживается по действию на магнитную стрелку Свойства магнитного поля Магнитное поле характеризуется направлением, определяемым с помощью магнитной стрелки

Линии магнитного поля – воображаемые линии, вдоль которых ориентируются магнитные стрелки Линии магнитного поля N N N Графически магнитное поле изображается с помощью магнитных силовых линий

Магнитные линии магнитного поля тока представляют собою замкнутые линии, охватывающие проводник + - Направлением магнитного поля в данной точки считают направление, в котором установится северный конец магнитной стрелки. Линии магнитного поля

Расположение магнитных стрелок вокруг проводника с током ● Почему для изучения магнитного поля можно использовать железные опилки? ● Как располагаются железные опилки в магнитном поле прямого проводника? ● Что называют магнитной линией магнитного поля? ● Для чего вводят понятие магнитной линии поля?

Определение направления линий магнитного поля проводника с электрическим током Направление магнитных линий магнитного поля тока связано с направлением тока в проводнике

Тест О чем свидетельствует опыт Эрстеда? а) о влиянии проводника с током на магнитную стрелку б) о существовании вокруг проводника с током магнитного поля в) об отклонении магнитной стрелки около проводника с током Источником магнитного поля являются а) движущиеся электрические заряды б) неподвижные заряды в) любые заряженные частицы 3. Магнитная линия магнитного поля – это… а) линия, по которой движутся железные опилки б) линия, которая показывает действие магнитного поля на магнитные стрелочки в) линия, вдоль которой устанавливаются в магнитном поле оси магнитных стрелочек

Тест 4. Какова форма магнитных линий магнитного поля прямого проводника с током? а) замкнутые кривые вокруг проводника б) концентрические окружности, охватывающие проводник в) радиальные линии, отходящие от проводника как от центра 5. Какое направление принято за направление магнитной линии магнитного поля? а) направление, которое указывает северный полюс магнитной стрелки б) направление, которое указывает южный полюс магнитной стрелки в) направление, в котором устанавливается ось магнитной стрелки

Рефлексия Я узнал много нового. Мне это пригодится в жизни. На уроке было над чем подумать. На все возникшие у меня в ходе урока вопросы, я получил ответы. 5. На уроке я поработал добросовестно и цели урока достиг.

Список использованной литературы А.В. Перышкин. Физика 8 класс. М.: Дрофа, 2013 А.В. Чеботарева. Тесты по физике 8 класс. М.: издательство «Экзамен» 2016 3. sdnnet.ru kabinet403.ucoz.ru tonpix.ru znanie.podelise.ru


Электромагнитные явления

Электромагнитные явления отражают связь электрического тока с магнитным полем. Все их физические законы хорошо известны, и мы не будем стараться поправить их; наша цель иная: объяснить физическую природу этих явлений.

Одно нам уже ясно: ни электричество ни магнетизм не могут быть без электронов; и в этом уже проявляется электромагнетизм. Говорили мы и о том, что катушка с током порождает магнитное поле . Задержимся на последнем явлении и уточним - как оно происходит.

Будем смотреть на катушку с торца, и пусть электрический ток по ней идет против часовой стрелки. Ток представляет собой поток электронов, скользящий по поверхности проводника (только на поверхности - открытые присасывающие желоба). Поток электронов будет увлекать за собой прилегающий эфир, и он начнет также двигаться против часовой стрелки. Скорость прилегающего к проводнику эфира будет определяться скоростью электронов в проводнике, а она, в свою очередь, будет зависеть от перепада эфирного давления (от электрического напряжения на катушке) и от проходного сечения проводника. Увлекаемый током эфир будет затрагивать соседние слои, и они также будут двигаться внутри и вне катушки по кругу. Скорость закрученного эфира распределится следующим образом: наибольшее ее значение, разумеется, - в районе витков; при смещении к центру она уменьшается по линейному закону, так что в самом центре она окажется нулевой; при удалении от витков на периферию скорость также будет уменьшаться, но не по линейному, а по более сложному закону.

Закрученное током макрозавихрение эфира начнет ориентировать электроны таким образом, что все они повернутся до параллельности осей вращения с осью катушки; при этом внутри катушки они будут вращаться против часовой стрелки, а за ее переделами - по часовой; одновременно электроны будут стремиться к соосному расположению, то есть будут собираться в магнитные шнуры. Процесс ориентирования электронов займет какое-то время, и по завершению его внутри катушки возникает магнитный пучок с северным полюсом в нашу сторону, а за пределами катушки, наоборот, северный полюс окажется удаленным от нас. Таким образом, мы доказали справедливость известного в электротехнике правила винта или буравчика, устанавливающего связь между направлением тока и направлением рожденного им магнитного поля.

Магнитная сила (напряженность) в каждой точке магнитного поля определится изменением скорости эфира в этой точке, то есть производной от скорости по удалению от витков катушки : чем круче изменение скорости, тем больше напряженность. Если соотносить магнитную силу катушки с ее электрическими и геометрическими параметрами, то она имеет прямую зависимость от величины тока и обратную - от диаметра катушки. Чем больше ток и чем меньше диаметр, тем больше возможностей собрать электроны в шнуры определенного направления вращения и тем большей окажется магнитная сила катушки. О том, что напряженность магнитного поля может усиливаться или ослабляться средой, уже говорилось.



Процесс преобразования электричества постоянного тока в магнетизм - не обратим: если в катушку поместить магнит, то ток в ней не возникает. Энергия макрозавихрения, существующего вокруг магнита, настолько мала, что не в силах заставить смещаться электроны по виткам при самых малых сопротивлениях для них. Еще раз напомним, что в обратном процессе макрозавихрение эфира, выполняющее роль посредника, лишь ориентировало электроны, и не более того, то есть только управляло магнитным полем, а сила поля определялась количеством однонаправленных магнитных шнуров.

Поднести магнитную стрелку, то она будет стремиться стать перпендикулярно плоскости, проходящей через ось проводника и центр вращения стрелки. Это указывает на то, что на стрелку действуют особые силы, которые называются магнитными силами . Кроме действия на магнитную стрелку, магнитное поле оказывает влияние на движущиеся заряженные частицы и на проводники с током, находящиеся в магнитном поле. В проводниках, движущихся в магнитном поле, или в неподвижных проводниках, находящихся в переменном магнитном поле, возникает индуктивная (э. д. с.).

Магнитное поле

В соответствии с вышесказанным мы можем дать следующее определение магнитного поля.

Магнитным полем называется одна из двух сторон электромагнитного поля, возбуждаемая электрическими зарядами движущихся частиц и изменением электрического поля и характеризующаяся силовым воздействием на движущиеся зараженные частицы, а стало быть, и на электрические токи.

Если продеть через картон толстый проводник и пропустить по нему , то стальные опилки, насыпанные на картон, расположатся вокруг проводника по концентрическим окружностям, представляющим собой в данном случае так называемые магнитные индукционные линии (рисунок 1). Мы можем передвигать картон вверх или вниз по проводнику, но расположение опилок не изменится. Следовательно, магнитное поле возникает вокруг проводника по всей его длине.

Если на картон поставить маленькие магнитные стрелки, то, меняя направление тока в проводнике, можно увидеть, что магнитные стрелки будут поворачиваться (рисунок 2). Это показывает, что направление магнитных индукционных линий меняется с изменением направления тока в проводнике.

Магнитные индукционные линии вокруг проводника с током обладают следующими свойствами: 1) магнитные индукционные линии прямолинейного проводника имеют форму концентрических окружностей; 2) чем ближе к проводнику, тем гуще располагаются магнитные индукционные линии; 3) магнитная индукция (интенсивность поля) зависит от величины тока в проводнике; 4) направление магнитных индукционных линий зависит от направления тока в проводнике.

Чтобы показать направление тока в проводнике, изображенном в разрезе, принято условное обозначение, которым мы в дальнейшем будем пользоваться. Если мысленно поместить в проводнике стрелку по направлению тока (рисунок 3), то в проводнике, ток в котором направлен от нас, увидим хвост оперения стрелы (крестик); если же ток направлен к нам, увидим острие стрелы (точку).

Рисунок 3. Условное обозначение направления тока в проводниках

Правило буравчика позволяет определить направление магнитных индукционных линий вокруг проводника с током. Если буравчик (штопор) с правой резьбой будет двигаться поступательно по направлению тока, то направление вращения ручки будет совпадать с направлением магнитных индукционных линий вокруг проводника (рисунок 4).

Магнитная стрелка, внесенная в магнитное поле проводника с током, располагается вдоль магнитных индукционных линий. Поэтому для определения ее расположения можно также воспользоваться "правилом буравчика" (рисунок 5). Магнитное поле есть одно из важнейших проявлений электрического тока и не может быть получено независимо и отдельно от тока.

Рисунок 4. Определение направления магнитных индукционных линий вокруг проводника с током по "правилу буравчика" Рисунок 5. Определение направления отклонений магнитной стрелки, поднесенной к проводнику с током, по "правилу буравчика"

Магнитное поле характеризуется вектором магнитной индукции, который имеет, следовательно, определенную величину и определенное направление в пространстве.

Рисунок 6. К закону Био и Савара

Количественное выражение для магнитной индукции в результате обобщения опытных данных установлено Био и Саваром (рисунок 6). Измеряя по отклонению магнитной стрелки магнитные поля электрических токов различной величины и формы, оба ученых пришли к выводу, что всякий элемент тока создает на некотором расстоянии от себя магнитное поле, магнитная индукция которого ΔB прямо пропорциональна длине Δl этого элемента, величине протекающего тока I , синусу угла α между направлением тока и радиусом-вектором, соединяющим интересующую нас точку поля с данным элементом тока, и обратно пропорциональна квадрату длины этого радиус-вектора r :

где K – коэффициент, зависящий от магнитных свойств среды и от выбранной системы единиц.

В абсолютной практической рационализованной системе единиц МКСА

где µ 0 – магнитная проницаемость вакуума или магнитная постоянная в системе МКСА:

µ 0 = 4 × π × 10 -7 (генри/метр);

генри (гн ) – единица индуктивности; 1 гн = 1 ом × сек .

µ – относительная магнитная проницаемость – безразмерный коэффициент, показывающий, во сколько раз магнитная проницаемость данного материала больше магнитной проницаемости вакуума.

Размерность магнитной индукции можно найти по формуле

Вольт-секунда иначе называется вебером (вб ):

На практике встречается более мелкая единица магнитной индукции – гаусс (гс ):

Закон Био Савара позволяет вычислить магнитную индукцию бесконечно длинного прямолинейного проводника:

где а – расстояние от проводника до точки, где определяется магнитная индукция.

Напряженность магнитного поля

Отношение магнитной индукции к произведению магнитных проницаемостей µ × µ 0 называется напряженностью магнитного поля и обозначается буквой H :

B = H × µ × µ 0 .

Последнее уравнение связывает две магнитные величины: индукцию и напряженность магнитного поля.

Найдем размерность H :

Иногда пользуются другой единицей измерения напряженности магнитного поля – эрстедом (эр ):

1 эр = 79,6 а /м ≈ 80 а /м ≈ 0,8 а /см .

Напряженность магнитного поля H , как и магнитная индукция B , является векторной величиной.

Линия, касательная к каждой точке которой совпадает с направлением вектора магнитной индукции, называется линией магнитной индукции или магнитной индукционной линией .

Магнитный поток

Произведение магнитной индукции на величину площадки, перпендикулярной направлению поля (вектору магнитной индукции), называется потоком вектора магнитной индукции или просто магнитным потоком и обозначается буквой Ф:

Ф = B × S .

Размерность магнитного потока:

то есть магнитный поток измеряется в вольт-секундах или веберах.

Более мелкой единицей магнитного потока является максвелл (мкс ):

1 вб = 108 мкс .
1 мкс = 1 гс × 1 см 2.

Видео 1. Гипотеза Ампера

Видео 2. Магнетизм и электромагнетизм

Если к прямолинейному проводнику с электрическим током поднести магнитную стрелку, то она будет стремиться стать перпендикулярно плоскости, проходящей через ось проводника и центр вращения стрелки. Это указывает на то, что на стрелку действуют особые силы, которые называются магнитными силами. Кроме действия на магнитную стрелку, магнитное поле оказывает влияние на движущиеся заряженные частицы и на проводники с током, находящиеся в магнитном поле. В проводниках, движущихся в магнитном поле, или в неподвижных проводниках, находящихся в переменном магнитном поле, возникает индуктивная э. д. с.

В соответствии с вышесказанным мы можем дать следующее определение магнитного поля.

Магнитным полем называется одна из двух сторон электромагнитного поля, возбуждаемая электрическими зарядами движущихся частиц и изменением электрического поля и характеризующаяся силовым воздействием на движущиеся заряженные частицы, а стало быть, и на электрические токи.

Если продеть через картон толстый проводник и пропустить по нему электрический ток, то стальные опилки, насыпанные на картон, расположатся вокруг проводника по концентрическим окружностям, представляющим собой в данном случае так называемые магнитные индукционные линии (фиг. 78). Мы можем передвигать картон вверх или вниз по проводнику, но расположение стальных опилок не изменится. Следовательно, магнитное поле возникает вокруг проводника по всей его длине.

Если на картон поставить маленькие магнитные стрелки, то, меняя направление тока в проводнике, можно увидеть, что магнитные стрелки будут поворачиваться (фиг. 79). Это показывает, что направление магнитных индукционных линий меняется с изменением направления тока в проводнике.

Магнитные индукционные линии вокруг проводника с током обладают следующими свойствами: 1) магнитные индукционные линии прямолинейного проводника имеют форму концентрических окружностей; 2) чем ближе к проводнику, тем гуще располагаются магнитные индукционные линии; 3) магнитная индукция (интенсивность поля) зависит от величины тока в проводнике; 4) направление магнитных индукционных линий зависит от направления тока в проводнике.

Направление магнитных индукционных линий вокруг проводника с током можно определить по «правилу буравчика:». Если буравчик (штопор) с правой резьбой будет двигаться поступательно по направлению тока, то направление вращения ручки будет совпадать с направлением магнитных индукционных линий вокруг проводника (фиг. 81),

Магнитная стрелка, внесенная в поле проводника с током, располагается вдоль магнитных индукционных линий. Поэтому для определения ее расположения можно также воспользоваться «правилом буравчика» (фиг. 82). Магнитное поле есть одно из важнейших проявлений электрического тока и не может быть

Получено независимо и отдельно от тока. Магнитное поле характеризуется вектором магнитной индукции, который имеет, следовательно, определенную величину и определенное направление в пространстве.

Количественное выражение для магнитиой индукции в результате обобщения опытных данных было установлено Био и Саваром (фиг. 83). Измеряя по отклонению магнитной стрелки магнитные поля электрических токов различной величины и формы, оба ученых пришли к выводу, что всякий элемент тока создает на некотором расстоянии от себя магнитное поле, магнитная индукция которого АВ прямо пропорциональна длине А1 этого элемента, величине протекающего тока I, синусу угла а между направлением тока и радиусом-вектором, соединяющим интересующую нас точку поля с данным элементом тока, и обратно пропорциональна квадрату длины этого радиуса-вектора r:

генри (гн)-единица индуктивности; 1 гн= 1 ом сек.

- относительная магнитная проницаемость - безразмерный коэффициент, показывающий, во сколько раз магнитная проницаемость данного материала больше магнитной проницаемости пустоты. Размерность магнитной индукции можно найти по формуле

вольт-секунда иначе называется вебером (вб):

На практике встречается более мелкая единица магнитной индукции-гаусс (гс):

Закон Био и Савара позволяет вычислить магнитную индукцию бесконечно длинного прямолинейного проводника:

где- расстояние от проводника до точки, где определяется

Магнитная индукция. Отношение магнитной индукции к произведению магнитных проницаемостей называется напряженностью магнитного поля и обозначается буквой Н:

Последнее уравнение связывает две магнитные величины: индукцию и напряженность магнитного поля. Найдем размерность Н:

Иногда пользуются другой единицей напряженности - эрстедом (эр):

1 эр = 79,6 a/м = 0,796 а/см.

Напряженность магнитного поля Н, как и магнитная индукция В, является векторной величиной.

Линия, касательная к каждой точке которой совпадает с направлением вектора магнитной индукции, называется линией магнитной индукции или магнитной индукционной линией.

Произведение магнитной индукции на величину площадки, перпендикулярной направлению поля (вектору магнитной индукции), называется потоком вектора магнитной индукции или просто магнитным потоком и обозначается буквой Ф:

Размерность магнитного потока:

т. е. магнитный поток измеряется в вольт-секундах или веберах. Более мелкой единицей магнитного потока является максвелл (мкс):

1 вб = 108 мкс. 1 мкс = 1 гс см2.

Пусть вдоль осиOZ расположен бесконечно длинный проводник, по которому течёт ток с силой . А сила тока это что такое?
,
- заряд, который пересекает поверхностьS за время
. Система обладает осевой симметрией. Если мы введём цилиндрические координатыr ,  , z , то цилиндрическая симметрия означает, что
и, кроме того,
, при смещении вдоль осиOZ , мы видим то же самое. Таков источник. Магнитное поле должно быть таким, чтобы удовлетворялись эти условия
и
. Это означает вот что: силовые линии магнитного поля – окружности, лежащие в плоскости ортогональной проводнику. Это немедленно позволяет найти магнитное поле.

Пусть у нас это проводник.

Вот ортогональная плоскость,

вот окружность радиуса r ,

я возьму тут касательный вектор, вектор, направленный вдоль , касательный вектор к окружности.

Тогда,
,
где
.

В качестве замкнутого контура выбираем окружность радиуса r = const . Пишем тогда , сумма длин по всей окружности (а интеграл это ни что иное, как сумма) – это длина окружности., где – сила тока в проводнике. Справа стоит заряд, который пересекает поверхность за единицу времени. Отсюда мораль:
. Значит, прямой проводник создаёт магнитное поле с силовыми линиями в виде окружностей, охватывающих проводник, и эта величинаВ убывает как при удалении от проводника, ну, и стремится к бесконечности, если мы приближаемся к проводнику, когда контур уходит внутрь проводника.

Этот результат только для случая, когда контур охватывает ток. Понятно, что бесконечный проводник нереализуем. Длина проводника, – наблюдаемая величина, и никакие наблюдаемые величины не могут принимать бесконечных значений, не такой линейки, которая позволила бы измерить бесконечную длину. Это нереализуемая вещь, тогда какой толк в этой формуле? Толк простой. Для любого проводника, будет справедливо следующее: достаточно близко к проводнику силовые линии магнитного поля – вот такие замкнутые окружности, охватывающие проводник, и на расстоянии
(R – радиус кривизны проводника), будет справедлива эта формула.

Магнитное поле, создаваемое произвольным проводником с током.

Закон Био-Савара.

Пусть мы имеем произвольный проводник с током, и нас интересует магнитное поле, создаваемое куском этого проводника в данной точке. Как, кстати, в электростатике находили мы электрическое поле, создаваемое каким-то распределением заряда? Распределение разбивали на малые элементы и вычисляли в каждой точке поле от каждого элемента (по закону Кулона) и суммировали. Такая же программа и здесь. Структура магнитного поля сложнее, чем электростатическое, кстати, оно не потенциально, замкнутое магнитное поле нельзя представить как градиент скалярной функции, у него другая структура, но идея та же самая. Разбиваем проводник на малые элементы. Вот я взял маленький элемент
, положение этого элемента определяется радиус-вектором, а точка наблюдения задаётся радиус-вектором. Утверждается, что этот элемент проводника создаст в этой точке индукциюпо такому рецепту:
. Откуда берётся этот рецепт? Его нашли в своё время экспериментально, трудно мне, кстати, представить, как это можно было экспериментально найти такую достаточно сложную формулу с векторным произведением. На самом деле это следствие четвёртого уравнения Максвелла
. Тогда поле, создаваемое всем проводником:
, или, мы можем написать теперь интеграл:
. Понятно, что вычислять такой интеграл для произвольного проводника занятие не очень приятное, но в виде суммы это нормальная задача для компьютера.

Пример. Магнитное поле кругового витка с током.

Пусть в плоскостиYZ располагается проволочный виток радиуса R, по которому течёт ток силы . Нас интересует магнитное поле, которое создаёт ток. Силовые линии вблизи витка такие:

Общая картина силовых линий тоже просматривается (рис.7.10 ).




По идее, нас интересовало бы поле
, но в элементарных функциях указать поле этого витка нельзя. Найти можно только на оси симметрии. Мы ищем поле в точках (х ,0,0).

Направление вектора определяется векторным произведением
. Векторимеет две составляющие:
и. Когда мы начнём суммировать эти вектора, то все перпендикулярные составляющие в сумме дадут ноль.
. А теперь пишем:
,
=, а
.
, и, наконец 1) ,
.

Мы добыли такой результат:

А теперь, в качестве проверки, поле в центре витка равна:
.

Поле длинного соленоида.

Соленоидом называется катушка, на которую намотан проводник.

Магнитное поле от витков складывается, и не трудно догадаться, что структура силовых линий поля такая: они внутри идут густо, а дальше разреженно. То есть для длинного соленоида снаружи будем считать=0, а внутри соленоида=const . Внутри длинного соленоида, ну, в окрестности. Скажем, его середины, магнитное поле практически однородно, а вне соленоида это поле мало. Тогда мы можем найти это магнитное поле внутри следующим образом: вот я беру такой контур (рис.7.13 ), а теперь пишем:
1)


.

- это полный заряд. Эту поверхность протыкают витки

(полный заряд)=
(число витков, протыкающих эту поверхность).

Мы получим такое равенство из нашего закона:
, или

.

Поле на большом расстоянии от ограниченного распределения тока.

Магнитный момент

Имеется в виду, что в ограниченной области пространства текут токи, тогда есть простой рецепт для нахождения магнитного поля, которое создаёт это ограниченное распределение. Ну, кстати, под это понятие ограниченное пространство подпадает любой источник, поэтому тут никакого сужения нет.

Если характерный размер системы , то
. Напомню, что мы решали аналогичную проблему для электрического поля, создаваемого ограниченным распределением заряда, и там появилось понятие дипольного момента, и моментов более высокого порядка. Решать эту задачу я здесь не буду.

По аналогии (как делалось в электростатике) можно показать, что магнитное поле от ограниченного распределения на больших расстояниях подобно электрическому полю диполя. То есть структура этого поля такая:

Распределение характеризуется магнитным моментом .Магнитный момент
, где– плотность тока или, если учесть, что мы имеем дело с движущимися заряженными частицами, то вот эту формулу для сплошно среды мы можем выразить через заряды частиц таким образом:
. Что эта сумма выражает? Повторяю, распределение тока создаётся тем, что движутся эти заряженные частицы. Радиус-векторi -ой частицы векторно умножается на скорость i -ой частицы и всё это умножается на заряд этой i -ой частицы.

Такая конструкция, кстати, у нас в механике была. Если вместо заряда без множителя написать массу частицы, то, что это будет изображать? Момент импульса системы.

Если мы имеем частицы одного сорта (
, например, электроны), то тогда мы можем написать

. Значит, если ток создаётся частицами одного сорта, то магнитный момент связан просто с моментом импульса этой системы частиц.

Магнитное поле , создаваемое этим магнитным моментом равно:

(8.1 )

Магнитный момент витка с током

Пусть у нас имеется виток и по нему течёт ток силы. Вектор отличен от нуля в пределах витка. Возьмём элемент этого витка,
, гдеS – поперечное сечение витка, а – единичный касательный вектор. Тогда магнитный момент определён так:
. А что такое
? Это вектор, направленный вдоль вектора нормали к плоскости витка. А векторное произведение двух векторов – это удвоенная площадь треугольника, построенного на этих векторах. ЕслиdS – площадь треугольника, построенного на векторах и, то
. Тогда мы пишем магнитный момент равняется. Значит,

(магнитный момент витка с током)=(сила тока)(площадь витка)(нормаль к витку) 1) .

А теперь мы формулу (8.1 ) применим для витка с током и сопоставим с тем, что мы добыли в прошлый раз, просто для проверки формулы, поскольку формулу эту я слепил по аналогии.

Пусть мы имеем в начале координат виток произвольной формы, по которому течёт ток силы , тогда поле в точке на расстоянии х равно: (
). Для круглого витка
,
. На прошлой лекции мы находили магнитное поле круглого витка с током, при
эти формулы совпадают.

На больших расстояниях от любого распределения тока магнитное поле находится по формуле (8.1 ), а всё это распределение характеризуется одним вектором, который называется магнитный момент. Кстати, простейший источник магнитного поля это магнитный момент. Для электрического поля простейший источник это монополь, для электрического поля следующий по сложности это электрический диполь, а для магнитного поля всё начинается с этого диполя или магнитного момента. Это, ещё раз обращаю внимание, постольку, поскольку нет этих самых монополей. Был бы монополь, тогда было бы всё также как в электрическом поле. А так у нас простейший источник магнитного поля это магнитный момент, аналог электрического диполя. Наглядный пример магнитного момента – постоянный магнит. Постоянный магнит обладает магнитным моментом, и на большом расстоянии его поле имеет такую структуру:

Сила, действующая на проводник с током в магнитном поле

Мы видели, что на заряженную частицу действует сила, равная
. Ток в проводнике есть результат движения заряженных частиц тела, то есть равномерно размазанного заряда в пространстве нет, заряд локализован в каждой частице. Плотность тока
. Наi -ую частицу действует сила
.

Выберем элемент объёма
и просуммируем силы, действующие на все частицы этого элемента объёма
. Сила, действующая на все частицы в данном элементе объёма, определяется как плотность тока на магнитное поле и на величину элемента объёма. А теперь перепишем её в дифференциальном виде:
, отсюда
– этоплотность силы , сила, действующая на единицу объёма. Тогда мы получим общую формулу для силы:
.

Обычно ток течёт по линейным проводникам, редко мы сталкиваемся с случаями, когда ток размазан как-то по объёму. Хотя, между прочим, Земля имеет магнитное поле, а от чего это поле? Источник поля это магнитный момент, это означает, что Земля обладает магнитным моментом. А это означает, что тот рецепт для магнитного момента показывает, что должны быть какие-то токи внутри Земли, они по необходимости должны быть замкнутыми, потому что не может быть стационарного разомкнутого поля. Откуда эти токи, что их поддерживает? Я не специалист в земном магнетизме. Какое-то время назад определённой модели этих токов ещё не было. Они могли быть там когда-то индуцированы и ещё не успели там затухнуть. На самом деле, ток можно возбудить в проводнике, и потом он быстро сам кончается за счёт поглощения энергии, выделения тепла и прочего. Но, когда мы имеем дело с такими объёмами как Земля, то там время затухания этих токов, однажды каким-то механизмом возбуждённых, это время затухания может быть очень длительным и длиться геологические эпохи. Может быть, так оно и есть. Ну, скажем, мелкий объект типа Луны имеет очень слабое магнитное поле, это означает, что оно затухло там уже, скажем, магнитное поле Марса тоже значительно слабее поля Земли, потому что и марс меньше Земли. Это я к чему? Конечно, есть случаи, когда токи текут в объёмах, но то, что мы здесь на Земле имеем это обычно линейные проводники, поэтому эту формулу сейчас трансформируем применительно к линейному проводнику.

Пусть имеется линейный проводник, ток течёт с силой. Выберем элемент проводника , объём этого элементаdV ,
,
. Сила, действующая на элемент проводника
перпендикулярна плоскости треугольника, построенного на векторахи, то есть направлена перпендикулярно к проводнику, а полная сила находится суммированием. Вот, две формулы решают эту задачу.

Магнитный момент во внешнем поле

Магнитный момент сам создаёт поле, сейчас мы собственное его поле не рассматриваем, а нас интересует, как ведёт себя магнитный момент, помещённый во внешнее магнитное поле. На магнитный момент действует момент силы, равный
. Момент силы будет направлен перпендикулярно к доске, и этот момент будет стремиться развернуть магнитный момент вдоль силовой линии. Почему стрелка компаса показывает на северный полюс? Ей, конечно, нет дела до географического полюса Земли, стрелка компаса ориентируется вдоль силовой линии магнитного поля, которая, в силу случайных причин, кстати, направлена примерно по меридиану. За счёт чего? А на неё действует момент. Когда стрелка, магнитный момент, совпадающий по направлению с самой стрелкой, не совпадает с силовой линией, появляется момент, разворачивающий её вдоль этой линии. Откуда у стрелки компаса берётся магнитный момент, это мы ещё обсудим.

Кроме того, на магнитный момент действует сила, равная
. Если магнитный момент направлен вдоль, то сила втягивает магнитный момент в область с большей индукцией. Эти формулы похожи на то, как действует электрическое поле на дипольный момент, там тоже дипольный момент ориентируется вдоль поля и втягивается в область с большей напряжённостью. Теперь мы можем рассмотреть вопрос о магнитном поле в веществе.

Магнитное поле в веществе

Атомы могут обладать магнитными моментами. Магнитные моменты атомов связаны с моментом импульса электронов. Уже была получена формула
, где– момент импульса частицы создающей ток. В атоме мы имеем положительное ядро и электроне , вращающийся по орбите, на самом деле, в своё время мы увидим, что эта картина не имеет отношения к реальности, так нельзя представлять электрон, который вращается, но остаётся то, что электрон в атоме обладает моментом импульса, и этому моменту импульса будет отвечать такой магнитный момент:
. Наглядно, заряд, вращающийся по окружности, эквивалентен круговому току, то есть это элементарный виток с током. Момент импульса электрона в атоме квантуется, то есть может принимать только определённые значения, вот по такому рецепту:
,
, где вот эта величина– это постоянная Планка. Момент импульса электрона в атоме может принимать лишь определённые значения, мы сейчас не будем обсуждать, как это получается. Ну, и вследствие этого магнитный момент атома может принимать определённые значения. Эти детали нас сейчас не волнуют, но, по крайней мере, будем представлять, что атом может обладать определённым магнитным моментом, есть атомы, у которых нет магнитного момента. Тогда вещество, помещённое во внешнее поле намагничивается, а это означает, что оно приобретает определённый магнитный момент вследствие того, что магнитные моменты атомов ориентируются преимущественно вдоль поля.

Элемент объёма dV приобретает магнитный момент
, при чём векторимеет смысл плотности магнитного момента и называется вектором намагничивания. Имеется класс веществ, называемыхпарамагнетики , для которых
, намагничивается так, что магнитный момент совпадает с направлением магнитного поля. Имеютсядиамагнетики , которые намагничиваются, так сказать, «против шерсти», то есть магнитный момент антипараллелен вектору , значит,
. Это более тонкий термин. То, что векторпараллелен векторупонятно, магнитный момент атома ориентируется вдоль магнитного поля. Диамагнетизм связан с другим: если атом не обладает магнитным моментом, то во внешнем магнитном поле он приобретает магнитный момент, при чём магнитный момент антипараллелен. Этот очень тонкий эффект связан с тем, что магнитное поле влияет на плоскости орбит электронов, то есть оно влияет на поведение момента импульса. Парамагнетик втягивается в магнитное поле, диамагнетик выталкивается. Вот, чтобы это не было беспредметно, медь – это диамагнетик, и алюминий – парамагнетик, если взять магнит то алюминиевая лепёшка будет притягиваться магнитом, а тогда медная будет отталкиваться.

Понятно, что результирующее поле, когда вещество внесено в магнитное поле, это есть сумма внешнего поля и поля, создаваемого за счёт магнитного момента вещества. Теперь обратимся к уравнению
, или в дифференциальной форме
. Теперь такое утверждение: намагничивание вещества эквивалентно наведению в нём тока с плотностью
. Тогда это уравнение мы напишем в виде
.

Проверим размерность: М – это магнитный момент в единице объёма
, размерность
. Когда вы пишете какую-нибудь формулу, то размерность всегда полезно проверять, особенно если формула эта собственной выводки, то есть вы её не срисовали, не запомнили, а получили.

Намагниченность характеризуется вектором , он так и называется вектор намагниченности, это плотность магнитного момента или магнитный момент в единицу времени. Я говорил, что намагниченность эквивалентна появлению тока
, так называемого молекулярного тока, и это уравнение эквивалентно такому:
, то есть мы можем считать, что нет намагниченности, а есть такие токи. Зададимся таким уравнением:
,- это настоящие токи, связанные с конкретными носителями зарядов, аэто токи, связанные с намагниченностью. Электрон в атоме это круговой ток, возьмём область внутри, внутри образца все эти токи уничтожаются, но наличие таких круговых токов эквивалентно одному общему току, который обтекает этот проводник по поверхности, отсюда и такая формула. Перепишем это уравнение в таком виде:
,
. Этоттоже отправим влево и обозначим
, векторназываетсянапряжённостью магнитного поля , тогда уравнение приобретёт вид
. (циркуляция напряжённости магнитного поля по замкнутому контуру) = (сила тока через поверхность этого контура).

Ну, и, наконец, последнее. Мы имеем такую формулу:
. Для многих сред намагниченность зависит от напряжённости поля,
, гдемагнитная восприимчивость , это коэффициент, характеризующий склонность вещества к намагничиванию. Тогда эта формула перепишется в виде
,
магнитная проницаемость , и мы получаем такую формулу:
.

Если
, то это парамагнетики,
- это диамагнетики, ну, и, наконец, имеются вещества, для которых этопринимает большие значения (порядка 10 3),
- это ферромагнетики (железо, кобальт и никель). Ферромагнетики замечательны тем. Что они не только намагничиваются в магнитном поле, а им свойственно остаточное намагничивание, если он уже однажды был намагничен, то, если убрать внешнее поле, то он останется намагниченным в отличии от диа- и парамагнетиков. Постоянный магнит – это и есть ферромагнетик, который без внешнего поля намагничен сам по себе. Кстати, имеются аналоги этого дела в электричестве: имеются диэлектрики, которые поляризованы сами по себе без всякого внешнего поля. При наличии вещества наше фундаментальное уравнение приобретает такой вид:

,

,

.

Авот ещёпример ферромагнетика, бытовой пример магнитного поля в средах, во-первых, постоянный магнит, ну, и более тонкая вещь – магнитофонная лента. Каков принцип записи на ленту? Магнитофонная лента - это тонкая лента, покрытая слоем ферромагнетика, записывающая головка - это катушка с сердечником, по которой течёт переменный ток, в зазоре создаётся переменное магнитное поле, ток отслеживает звуковой сигнал, колебания с определённой частотой. Соответственно, в контуре магнита имеется переменное магнитное поле, которое меняется вместе с этим самым током. Ферромагнетик намагничивается переменным током. Когда эта лента протягивается по устройству такого типа, переменное магнитное поле создаёт переменную э.д.с. и воспроизводится опять электрический сигнал. Это ферромагнетики на бытовом уровне.

Вышивка