Пенопласт для фигурной резки

Содержание

Особенности обработки полимерных материалов

Резка полимерных материалов обладает следующими особенностями:

Общая характеристика полимеров

  • полимерные вещества обладают высокими упругими свойствами;
  • полимерные вещества имеют низкий коэффициент пластичности;
  • процесс механического разрушения происходит без пластического течения и носит кускообразный характер;
  • процесс обработки полимерного материала требует воздействия небольшой по величине силы резания.

Высокие упругие характеристики таких веществ вызывают обратимую деформацию слоя, лежащего в пределах поверхности резания. Это приводит к взаимному контактированию режущего инструмента с материалом и, как следствие, увеличению сил трения между ними. По этой причине обработку пенопласта рекомендуется вести только острозаточенным и смазанным машинным маслом инструментом.

Величина прилагаемого усилия влияет на точность и качество обработки. Правильный расчет этого усилия позволяет назначить оптимальные параметры оборудования и оценить величину погрешности обработки.

Принципиальная схема машины для резки полимеров

Виды станков с ЧПУ для резки пенопласта

Станки с ЧПУ, используемые для обработки полимерной продукции, классифицируют по нескольким признакам.

В зависимости от конструкции, оборудование с ЧПУ может быть:

  • портативное;
  • стационарное.

Портативное. Эти модели характеризуются простотой конструкции и возможностью их беспрепятственного перемещения. Кроме того, их можно собирать своими руками. Подобные агрегаты используются для выполнения небольшого количества задач и выпуска небольших партий товара.

Стационарное. Устанавливаются на длительное время и характеризуются большим весом, габаритами, сложностью устройства и многофункциональностью. Часто такие станки оснащены числовым программным управлением (ЧПУ), используемым для автоматизации процесса резки больших объемов продукции.

По способу обработки станки с ЧПУ бывают:

  • С продольным и/или поперечным способом 2D-резания. В станках этого типа движение режущего механизма осуществляется в одной из пространственных осей.
  • Для получения сложных объемных фигурных изделий (3Д-резание).

В станках этого типа режущий механизм двигается по осям X и Y пространственной системы координат при помощи механизмов, управляемых компьютерным программным управлением.

Обзор популярных моделей

В современных условиях промышленной обработки полимерных материалов используются станки с ЧПУ как отечественного, так и зарубежного производства. К наиболее популярным отечественным разработкам относят станки с ЧПУ для резки пенопласта фирм Apparatus, СРП, Киберстек, Antum.

Станок для резки пенопласта

Наиболее популярные модели станков с ЧПУ пенорезкой отечественных производителей представлены в таблице.

Наименование модели Вид обрабатываемой продукции Режим работы Режущий

инструмент

Рабочая область

X*Y*Z, см

Потребляемая мощность, Вт Вес станка, кг Стоимость, тыс.руб.
Продукция фирмы Apparatus
АРПУ-3(4)Д-60-60-60 пенопласт, пенополистирол, листовой пластик 2D, 3D Нихромовая нить, фрезерный станок 60х60х60 от 400 до 1300 70 65
АРП-4Д-90-60 Пенопласт, пенополистирол, экструзионный полистирол 2D, 3D Нихромовая нить 90х60 с изменяемой длиной струны не более 350 45 85
Продукция фирмы Antum
FCM6060 Пенопласт, пенополистирол, экструзионный полистирол 2D, 3D Нихромовая нить, фрезерный станок 60х60х60 от 400 до 1300 65 85
A06-U Пенопласт, пенополистирол, экструзионный полистирол 2D, 3D Нихромовая нить, 120х60 с изменяемой длиной струны не более 400 50 50
Продукция фирмы Киберстек
CNC Foam Cutter — 2017 Пенопласт, пенополистирол, экструзионный полистирол 2D, 3D Нихромовая нить 100х135х250 не более 2000 110 190-200
Продукция фирмы СРП
СРП-3221 «МаксиУниверсал» Пенопласт, пенополистирол, экструзионный полистирол 2D, 3D Нихромовая нить 150х125х220 не более 1500 100 180-200

Из зарубежных производителей станков с ЧПУ хорошо зарекомендовала себя продукция фирм:

  • Proxxon (Германия);
  • FUBAG (Германия);
  • SPARKY (Болгария);
  • Megaplot (Польша).

В последнее время на российском рынке появились образцы станочного оборудования с ЧПУ китайского производства, например, фирмы Limac.

Изготовление станка в домашних условиях

Ввиду высокой стоимости станков с ЧПУ заводского исполнения, некоторыми умельцами придуманы способы изготовление такого оборудования своими руками.

Создание станка для 2D-резки пенопласта в домашних условиях потребует применения следующих материалов:

  • верстак (рабочий стол);
  • понижающий трансформатор 220/12В;
  • реостат или ЛАТР (лабораторный автотрансформатор регулируемый);
  • проволока из нихрома длиной 0,5 м;
  • металлические пружины.

Схема станка для резки пенопласта своими руками

В качестве опорной конструкции для оборудования могут быть использованы лист фанеры, ДВП, ДСП, текстолитовая площадка толщиной 10–20 мм и размерами, соответствующими размерам планируемой к выпуску продукции.

По центру верстака укладывается опорный лист, по краям которого устанавливаются стойки для нити накаливания. На требуемой высоте одной из стоек крепится режущая проволока. Ко второй стойке крепится второй конец режущей проволоки с пружиной, соединенной с противовесом. Пружина в данном случае предназначена для натяжения нити во время ее нагревания.

Устройство станка для 3D-резки пенопласта

Посредством последовательного соединения концов первичной обмотки трансформатора к сети электропитания 220 В, а выходных концов трансформатора через реостат (ЛАТР) к концам нихромовой нити накаливания, производят ее нагрев. С помощью реостата (ЛАТРа) производится регулировка температуры нагрева нити и осуществляется подбор оптимальной скорости подачи материала.

Конструирование станка для 3D-резки пенопласта своими руками потребует увеличить количество нихромовых нитей с соответствующим усложнением электрической схемы.

Изготовление станка для обработки полимерных материалов своими руками поможет сэкономить значительную часть средств, которые можно направить на приобретение расходных материалов.

Станок для обработки пенопласта Cutter VSK-P

  • Станки ЧПУ
    • Серия H
    • Серия GQ
    • Серия CH
    • Серия KTM
    • Серия SE
    • Серия ST
    • Серия GT
    • Серия VSK
    • Серия HD (Настольный)
    • Серия STL
    • Серия GTL
    • Серия GR
    • Серия V
    • Серия HM
  • Лазерные станки с ЧПУ
  • Токарные станки
  • Круглофрезерный станок
  • Лазерно-гравировальные станки
  • Станок плазменной резки
  • Многошпиндельные станки
  • Станок для обработки пенопласта
  • 3D Принтеры
    • 3D — Принтеры
    • PLA пластиковая нить
  • Покрасочный станок
  • Комплектующие к ЧПУ
    • Драйверы и контроллеры ШД
      • Системы управления NC Studio
      • Многоканальные драйверы ШД для ЧПУ
      • Драйверы ШД одноканальные
      • Драйверы ШД одноканальные Leadshine
      • Драйверы шаговых серво-двигателей
      • ЧПУ контроллеры и переходники
      • Пульты DSP
      • Блок управления станком ЧПУ
        • Блоки управления с LPT-контроллером
        • Блоки управления с USB-контроллером
        • Блоки управления с NC Studio
        • Блоки управления с DSP пультом
      • Кабель LPT
      • Кнопки
    • Датчики концевые
    • Блоки питания, трансформаторы, ЭМИ фильтры
      • Импульсные БП стандартные
      • Трансформаторы тороидальные
      • ЭМИ — фильтры
    • Частотные преобразователи
      • Частотные преобразователи Powtran
      • Частотные преобразователи Sunfar
      • Тормозные резисторы
    • Шаговые двигатели и аксессуары
      • Держатели шаговых двигателей
      • Шаговые двигатели
      • 3-х фазные шаговые двигатели
      • Шаговый двигатель с 2 валами
      • Шаговые двигатели с энкодером
      • Шаговые двигатели с редуктором
      • Шаговые двигатели с трапецеидальным винтом
      • Шаговые двигатели для цилиндрических редукторов
      • Комплект для подключения ШД с энкодером
    • Редукторы
      • Планетарные редукторы
      • Червячные редукторы
      • Цилиндрические редукторы
    • Сервопривод
      • Серводвигатели
      • Серводрайвера
    • Шпиндели электрические
      • Шпиндели жидкостного (водного) охлаждения
      • Шпиндели воздушного охлаждения
      • Прижимы листового материала
      • Разъемы для подключения
      • Тормозные резисторы
      • Шпиндельная головка
      • Крепления для шпинделей алюминиевые
      • Оправки для шпинделей с автосменой
      • Щетка-насадка
      • Системы охлаждения шпинделей
      • Удлинители
    • Системы аспирации
    • Цилиндрические направляющие
      • Полированные валы и держатели
      • Цилиндрические рельсы
    • Линейные подшипники и модули
      • Линейные подшипники
      • Модули с линейным подшипником
    • Профильные направляющие
    • Шарико-винтовые передачи (ШВП)
    • Опоры ходовых винтов
    • Зубчатые рейки и шестерни
      • Рейка косозубая и шестерня
      • Рейки и шестерни модуль 1
      • Рейки и шестерни модуль 1,5
    • Зубчатые ремни и шкивы
      • Ремни замкнутые
      • Ремни открытые
      • Шкивы
    • Поворотная ось
    • Алюминиевый станочный профиль и аксессуары
      • Алюминиевый станочный профиль
      • Аксессуары для профиля
      • Соединительные пластины
    • Кабель-каналы станочные гибкие
    • Гофрозащита
    • Муфты соединительные
      • Кулачковые муфты
      • Мембранные муфты
      • Гибкие муфты
      • Жесткие соединительные муфты (алюминий)
      • Сильфонные муфты
    • Системы СОЖ и масляного тумана
      • Помпы
      • Система автосмазки
      • Распылители масляного тумана
      • Трубки СОЖ
      • Бак для СОЖ
    • Системы централизованной смазки
      • Ручные насосы для смазки
      • Аксессуары для подключения
      • Системы автоматической смазки
    • Вакуумные столы
    • Вакуумные присоски
  • Комплектующие для лазерных станков
    • Лазерные модули
    • Лазерная трубка
    • Лазерные головки с автофокусом
    • Крепление лазерной трубки
    • Блоки розжига
    • Контроллер управления
    • Лазерные головки
    • Сотовый стол
    • Держатель зеркала
    • Амперметр
    • Зеркала и линзы
    • Вентиляция
  • Готовые модули
  • Режущий инструмент
    • Фрезы спиральные
      • Однозаходные стружка вверх
      • Однозаходные стружка вверх MF
      • Однозаходные стружка вниз
      • Однозаходные стружка вниз MF
      • Двухзаходные стружка вверх
      • Двухзаходные стружка вверх MF
      • Двухзаходные стружка вниз
      • Двухзаходные со стружкоколом
      • Трехзаходные стружка вверх
      • Трехзаходные стружка вниз
      • Трехзаходные со стружкоколом
      • Четырехзаходные стружка вверх
    • Фрезы по алюминию
      • Спиральная однозаходная (обработка цветного металла)
      • Спиральные фрезы по алюминию HSS Z1
      • Спиральная однозаходная (обработка алюминия)
      • Спиральная двухзаходная (цветной металл)
      • Спиральная трехзаходная (цветной металл)
    • Компрессионые фрезы
      • Однозаходные фрезы
      • Однозаходные компрессионные фрезы MF
      • Двухзаходные фрезы
      • Трехзаходные фрезы
    • Прямые фрезы
      • Однозаходные
      • Двухзаходные
      • Рашпильные (Кукуруза)
    • Фрезы для 3-D обработки
      • Спиральные однозаходные сферические
      • Спиральные двухзаходные сферические
      • Спиральные однозаходные конические
      • Спиральные двухзаходные конусные сферические
      • Спиральные двухзаходные конусные сферические (сплав Tigra)
      • Спиральные двухзаходные конусные сферические MF
      • Прямые двухзаходные конусные (плоский кончик)
      • Прямые двухзаходные конусные сферические
      • Спиральные двухзаходные конусные (плоский кончик)
      • Спиральная однозаходная конусная (Плоский кончик)
      • Прямые двухзаходные сферические
    • Фрезы по стали
      • Спиральная двухзаходная с покрытием ALTiN
      • Спиральная двухзаходная сферическая с поктытием ALTiN
      • Спиральная четырехзаходная фреза с поктытием ALTiN
      • Спиральная четырехзаходная радиусная с поктытием ALTiN
    • Фрезы V-образные
    • Фасоные фрезы
      • Прямая для выравнивая поверхности
      • Сферическая галтельная
      • Кромочная
        • Серия RND
        • Серия HBDA
        • Серия HBDE
        • Серия HBDD
        • Серия HBDC
        • Серия HBDB
        • Серия QDA
        • Серия QDB
        • Серия QDC
        • Серия QDYTD
      • Полукруглая радиусная
      • Сгибочная монолитная по композиту
    • Сверло для печатных плат
    • Граверы
      • Прямой гравер
      • Конический гравер
      • Конический гравер (однозаходный)
      • Конический гравер (спиральный однозаходный)
      • Конический гравер (сферический)
      • Конический гравер (Пирамидка)
      • Конический гравер по стали
      • Конический двухзаходный гравер (сталь, цветной металл)
      • Конический двухзаходный гравер (Лиственные породы деревьев)
      • Конический гравер пирамидка (Поликристалический алмаз)
      • Гравер прямой с конусом
      • Гравер спиральный с конусом
    • Фрезы алмазные по камню
      • Фреза алмазная V-образная шлифовальная (вакуумная пайка)
      • Фреза алмазная торцевая шлифовальная (вакуумная пайка)
      • Фреза алмазная сферическая шлифовальная (вакуумная пайка)
      • Фреза алмазная коническая шлифовальная (вакуумная пайка)
      • Армированная алмазная концевая фреза
    • Нож флюгерного типа
      • Для плоттера Roland
      • Для плоттера Graphtec
      • Для плоттера Mimaki
    • Фрезы серии TСТ
    • Фрезы для ручного фрезера
      • Фрезы пазовые (ласточкин хвост)
      • Фрезы прямые пазовые (2-а ножа)
      • Фрезы Шип-Паз
      • Фрезы обгонные с нижним подшипником
    • Цанги и гайки
      • Цанги DJTOL
      • Цанги ER11
      • Цанги ER16
      • Цанги ER20
      • Цанги ER25
      • Цанги ER32
      • Цанги Kress
    • Щетки для шлифовки поверхностей
      • Щетки с диаметром хвостовика 3 мм
      • Щетки с диаметром хвостовика 6 мм
      • Щетки с добавлением карбида кремния. d хвостовика 6мм
    • Шлифовальные машинки
    • Сверла чашечные
    • Пластины для резца
    • Инструмент для термопластичного сверления
  • Фрезы ARDEN для ручных и ЧПУ фрезеров
    • Фрезы пазовые прямые
      • Фрезы пазовые монолитные 107 серия
      • Фрезы пазовые с врезным зубом 105 серия
      • Фрезы пазовые с напайными ножами 110 серия
      • Фрезы пазовые с одним режущим ножом, 101 серия
    • Фрезы для выравнивания поверхности
      • Фреза для выравнивания дна и слэбов
      • Фреза для выравнивания поверхности, усиленная, 180 серия
      • Фрезы для выравнивания плоскости 214 серия
    • Фрезы V-образные
      • Фреза пазовая с углом 60 гр. 223 серия
      • Фрезы для обгона и снятия фаски 45 гр, 157 серия
      • Фрезы для снятия фаски с нижним подшипником, 156 серия
      • Фрезы пазовые V-образные 90 градусов 200 серия
      • Фрезы пазовые для Алюкобонда 200A серия
    • Фрезы кромочные прямые
      • Фрезы обгонные Z3, усиленные с нижн. подш. 150 серия
      • Фрезы ARDEN обгонные с V-образной канавкой 153 серии 153821
      • Фрезы обгонные с верх.подш. 152B серия
      • Фрезы обгонные с лезвием под углом с нижн. подш. 150_1 серия
      • Фрезы обгонные с лезвием под углом, нижний и верхний подш. 151B серия
      • Фрезы обгонные с нижн. подш. 151 серия
      • Фрезы пазовые с наклонным лезвием 3°, 110A серия
    • Фрезы для врезания петель и замков
      • Фрезы для врезания замков со стружколомом 2-16 серия
      • Фрезы для выборки паза под петли, 109 серия
      • Фрезы пазовые для врезания петель, 108 серия
    • Фрезы пазовые галтельные
      • Фрезы внешн. радиус «Галтель» с нижн. подш. 305 серия
      • Фрезы для желобов и чаш, 215 серия
      • Фрезы пазовые круглый нос «Пальчиковые», 204 серия
      • Фрезы пазовые полукруг «Чаша», 203 серия
    • Фрезы радиусные полукруглые
      • Фрезы внутр. радиус с нижн. подш. 301 серия
      • Фрезы врезные радиусные «Псевдофиленка», 213 серия
      • Фрезы для скругления, 225 серия
      • Фрезы радиусные «Ovolo» 209B серия
      • Фрезы радиусные «Псевдофилёнка, 209 серия
    • Фрезы «Ласточкин хвост»
    • Фрезы пазовые
      • Сменные режущие диски (крепление гайкой) 704 серия
      • Фрезы «Нижний паз» с верхним подшипником
      • Фрезы «Т-образный паз» 501 серия
      • Фрезы пазовые с диском, 704 серия
      • Фрезы пазовые Т-образной формы, А161 серия
    • Фрезы четвертные
      • Фрезы четвертные с набором подшипников
      • Фрезы четвертные, 307 серия
    • Фрезы профильные
      • Фреза «Гусёк» (псевдофилёнка), 222 серия
      • Фрезы «Гусёк» 210 серия
      • Фрезы «Тройной внешний радиус», 323 серия
      • Фрезы «Декоративный гусёк» 212 серия
      • Фрезы «Классический узор», 211 серия
      • Фрезы «Тройной внутренний радиус», 324 серия
      • Фрезы «Шар» 208 серия
      • Фрезы Бычий нос «Катушка», 330 серия
      • Фрезы внешнее и внутреннее скругление 2 в 1
      • Фрезы для скругления удлиненные
      • Фрезы мультипрофильные (Карниз), 351 серия
      • Фрезы овальное скругление (Жалюзи)
      • Фрезы превсофиленка «Волна-1»
      • Фрезы профильные «Ручка» 502 серии
      • Фрезы профильные «Углубленный шар», 329 серия
      • Фрезы профильные «Французская классика», 352 серия
      • Фрезы профильные для плинтусов, 403 серия
      • Фрезы фигурные «Классический гусёк», 311 серия
      • Фрезы филёночные, 416 серия
    • Фрезы для сращивания и мебельной обвязки
      • Комплект 2 фрезы (Мебельная обвязка)
      • Фрезы «Шиповое сращивание», 602 серия
      • Фрезы для изготовления мебельных ящиков
      • Фрезы для углового сращивания «Бочка», 604 серия
      • Фрезы для углового сращивания 603 серия
      • Фрезы для шиповых соединений, 609 серия
      • Фрезы сращивания 15-30 мм (Щит)
    • Комплектующие к фрезам ARDEN
      • Державки для сменных дисков (крепление гайкой)
      • Державки с подшипником для сменных дисков
      • Подшипники для фрез
    • Набор радиальных и фасочных фрез
  • Комплектующие для плазменной резки
    • Комплектующие Hypertherm Powemax
    • Сопла для плазмотронов
    • Источники плазмы
    • Контроллеры
    • Плазмотроны
  • Пневматическое оборудование
    • Распределители воздуха
    • Блоки подготовки воздуха
    • Регуляторы давления воздуха
    • Пневматические цилиндры
    • Фитинги
      • Фитинги разветвители
      • Фитинги прямые
      • Фитинги серии PC
      • Фитинги серии PCF
      • Фитинги серии PM
      • Пневмозаглушки
      • Фитинги с краном
      • Фитинги угловые
    • Быстроразьёмные соединения
      • Розетки серии SH, SP, SF,SM
      • Штекеры серии SH, SP, SF, SM
      • Штуцеры
    • Пневмотрубки
  • Дисковые пилы
    • Пильные диски CMT
      • Универсальные пильные диски
      • Пильные диски для поперечного пиления дерева
      • Пильные диски для продольного пиления дерева
    • Дисковая пила серия А
      • Диск по дереву
      • Диск по алюминию
    • Дисковые пилы серия L
  • Оборудование для покраски
    • Красконагнетательные баки
    • Распылитель краски

Самодельный станок для резки пенопласта

Тепло и звукоизоляционные строительные материалы на рынке представлены в широком ассортименте, это вспененный полиэтилен, минеральная и базальтовая вата и многие другие. Но самым распространенным для утепления и звукоизоляции является экструдированный пенополистирол и пенопласт, благодаря высоким физико-химическим свойствам, простоте монтажа, малому весу и низкой стоимости. Пенопласт имеет низкий коэффициент теплопроводности, высокий коэффициент звукопоглощения, устойчив к воздействию воды, слабых кислот, щелочей. Пенопласт устойчив к воздействию температуры окружающей среды, от минимально возможной до 90˚С. Даже через десятки лет пенопласт не меняет своих физико-химических свойств. Пенопласт также обладает достаточной механической прочностью.

Пенопласт обладает еще очень важными свойствами, это пожароустойчивость (при воздействии огня пенопласт не тлеет как древесина), экологическая чистота (так как пенопласт сделан из стирола, то в таре из него можно хранить даже пищевые продукты). На пенопласте не возникают грибки и очаги бактерий. Практически идеальный материал для утепления и звукоизоляции при строительстве и ремонте домов, квартир, гаражей, и даже упаковки для хранения продуктов питания.

В магазинах строительных материалов пенопласт продается в виде пластин разной толщины и размеров. При ремонте зачастую нужны листы пенопласта разной толщины. При наличии электрического резака пенопласта всегда можно нарезать из толстой пластины листы нужной толщины. Станок также позволяет фигурную пенопластовую упаковку от бытовой техники превратить в пластины, как на фотографии выше, и успешно разрезать толстые листы поролона для ремонта мебели.

Как легко режется пенопласт на самодельном станке, наглядно демонстрирует видео ролик.

При желании сделать резак для пенопласта и поролона многих останавливает сложность с организацией подачи питающего напряжения для разогрева нихромовой струны до нужной температуры. Это препятствие преодолимо, если разобраться в физике вопроса.

Конструкция станка

Основанием приспособления для резки пенопласта послужил лист ДСП (древесно-стружечной плиты). Размер плиты нужно брать исходя из ширины пластин пенопласта, которые планируется разрезать. Я использовал дверку от мебели размером 40×60 см. При таком размере основания можно будет разрезать пластины пенопласта шириной до 50 см. Основание можно сделать из листа фанеры, широкой доски, закрепить струну резки непосредственно на рабочем столе или верстаке.

Натягивать нихромовую струну между двумя гвоздями предел лени домашнего мастера, поэтому я реализовал простейшую конструкцию, обеспечивающую надежную фиксацию и плавную регулировку высоты расположения струны в процессе резки над поверхностью основания станка.

Крепятся концы нихромовой проволоки за пружины, одетые на винты М4. Сами винты закручены в металлические стойки, запрессованные в основание станка. При толщине основания 18 мм, я подобрал металлическую стойку длиной 28 мм, из расчета, чтобы при полном вкручивании винт не выходил за пределы нижней стороны основания, а при максимально выкрученном состоянии обеспечивал толщину нарезки пенопласта 50 мм. Если потребуется нарезать листы пенопласта или поролона большей толщины, то достаточно будет заменить винты более длинными.

Чтобы запрессовать стойку в основание, сначала в нем просверливается отверстие, диаметром на 0,5 мм меньше, чем внешний диаметр стойки. Для того, чтобы стойки легко можно было забить молотком в основание, острые кромки с торцов были сняты на наждачной колонке.

Прежде, чем закручивать в стойку винт, у его головки была проточена канавка, чтобы нихромовая проволока при регулировке не могла произвольно перемещаться, а занимала требуемое положение.

Чтобы проточить в винте канавку, сначала его резьбу нужно защитить от деформации, надев пластиковую трубку или обернуть плотной бумагой. Затем зажать в патроне дрели, включить дрель и приложить узкий надфиль. Через минуту канавка будет готова.

Для исключения провисания нихромовой проволоки из-за удлинения при нагреве, она закреплена к винтам через пружины.

Подходящей оказалась пружина от компьютерного монитора, используемая для натяжения заземляющих проводников на кинескопе. Пружина была длиннее, чем требовалось, пришлось сделать из нее две, для каждой стороны крепления проволоки.

После подготовки всех крепежных деталей можно закреплять нихромовую проволоку. Так как ток при работе потребляется значительный, около 10 А, то для надежного контакта токоподводящего провода с нихромовой проволокой я применил способ крепления скруткой с обжатием. Толщину медного провода при токе 10 А необходимо брать сечением не менее 1,45 мм2. Выбрать сечение провода для подключения нихромовой проволоки можно из таблицы. В моем распоряжении имелся провод сечением около 1 мм2. Поэтому пришлось каждый из проводов сделать из двух сечением 1 мм2, соединенных параллельно.

После снятия изоляции с концов проводов на длину около 20 мм, медные проводники навиваются на струну нихромовой проволочки в месте ее крепления к пружине. Затем, удерживая нихромовую проволочку за петлю плоскогубцами, сделанная обвивка медного провода овивается свободным концом нихромовой в противоположную сторону.

Такой способ соединения токоподводящего медного провода с нихромовым проводом обеспечит большую площадь их контакта и исключит сильный нагрев в месте соединения при работе станка для резки пенопласта. Это подтвердила практика, после продолжительной резки пенопласта, полихлорвиниловая оболочка токоподводящего провода не оплавилась, медный провод в зоне соединения не изменил своего цвета.

Для возможности регулировки толщины резки пенопласта на приспособлении, отвод токоподводящих проводников сделан с петлей. Чтобы провода не мешали при работе, они пропущены через отверстия в основании и закреплены на обратной его стороне скобками. По углам основания прибиты такие же скобки в качестве ножек.

Токоподводящие провода резака, чтобы не запутывались, свиты между собой. На концах проводов для подключения к источнику питания, запаяны накидные клеммы.

Выбор нихромовой проволоки

Нихромовая проволока по внешнему виду мало чем отличается от стальной проволоки, но сделана она из сплава хрома и никеля. Наиболее распространена проволока марки Х20Н80, содержащая 20% хрома и 80% никеля. Однако в отличие от стальной или медной проволоки, нихромовая проволока имеет большее удельное сопротивление и выдерживает, сохраняя, высокую механическую прочность температуру нагрева до 1200˚С. Нихромовая проволока выпускается диаметром от 0,1 мм до 10 мм.

Нихромовая проволока широко используется в качестве нагревательных элементов в бытовых и промышленных изделиях, таких как электрический фен, утюг, электроплитка, лучевые обогреватели, паяльники, водонагреватели и даже в электрочайниках. И это далеко не полный перечень. Так называемые нагреватели типа ТЭН тоже изготовлены из нихромовой проволоки, только спираль размещена в металлической трубке, которая заполнена для изоляции и передаче тепла от спирали к стенкам трубки, кварцевым песком. Привел перечень приборов не случайно, просто из вышедшего из строя нагревательного элемента можно взять нихромовую проволоку для изготовления станка, конечно, если она не успела перегореть от долгой работы.

Резка пенопласта на станке заключается в расплавлении его по линии прохода, разогретой нихромовой проволоки. Температура плавления пенопласта составляет около 270˚С. Чтобы пенопласт плавился при соприкосновении с проволокой, температура ее должна быт в несколько раз больше, так как тепло будет расходоваться не только на плавление, но и за счет теплопроводности поглощаться самим пенопластом, снижая температуру проволоки. Количество поглощаемого пенопластом тепла будет напрямую зависеть от его плотности. Чем плотнее пенопласт, тем больше потребуется тепловой энергии.

Из выше сказанного следует, что в зависимости от плотности пенопласта для его резки необходимо выбирать проволоку соответствующего диаметра, чтобы нихромовая проволока не расплавилась от выделяющегося на ней тепла. Чем выше плотность пенопласта, тем большего диаметра должна быть нихромовая проволока. Стоит заметить, что резаком, на котором установлена проволока для резки плотного пенопласта с успехом будет резаться и неплотный, только продвигать его надо будет быстрее.

Длина нихромовой проволоки для резака выбирается исходя из размеров пластин пенопласта, предназначенного для резки, и от плотности пенопласта не зависит.

В результате подведенных экспериментов, было определено, что для эффективной резки пенопласта мощность, которую необходимо подавать на единицу длины проволоки должна быть в пределах 1,5-2,5 Вт на сантиметр длины проволоки, для такого режим работы лучше всего подходит нихромовая проволока диаметром 0,5-0,8 мм. Она позволяет выделить достаточное количество тепла для быстрой резки пенопласта любой плотности, сохраняя при этом свою механическую прочность. Поэтому для изготовления станка для резки пенопласта была использована нихромовая проволока диаметром 0,8 мм.

Расчет параметров источника электропитания
для нагрева проволоки

Надо отметить, что для разогрева нихромовой проволоки станка для резки пенопласта подойдет источник электропитания как переменного тока, так и постоянного.

С учетом того, что на сантиметре длины проволоки нужно выделять мощность не более 2,5 ватта и длине проволоки 50 см, можно рассчитать мощность источника электропитания. Для этого нужно умножить величину выделяемой мощности на длину проволоки. В результате получается, что для разогрева проволоки станка для резки пенопласт понадобится источник электропитания мощность 125 Вт.

Теперь необходимо определить величину напряжения источника электропитания. Для этого нужно знать сопротивление нихромовой проволоки станка для резки пенопласта.

Сопротивление проволоки можно рассчитать по удельному сопротивлению (сопротивлению одного метра проволоки). Удельное сопротивление проволоки из нихрома марки Х20Н80 приведено в таблице. Для других марок нихрома значения отличаются незначительно.

Зависимость погонного сопротивления (одного метра) проволоки из нихрома Х20Н80 от величины его диаметра
Диаметр нихромового провода, мм 0,1 0,2 0,3 0,4 0,5 0,60 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,5 2,0 2,2 2,5 3,0 3,5 4,0
Погонное сопротивление, Ом/м 137,00 34,60 15,71 8,75 5,60 3,93 2,89 2,20 1,70 1,40 1,16 0,97 0,83 0,62 0,35 0,31 0,22 0,16 0,11 0,087

Как видно из таблицы, для проволоки диаметром 0,8 мм удельное сопротивление составляет 2,2 Ом, следовательно, нихромовая проволока длинной 50 см, которая была выбрана для станка резки пенопласта, будет иметь сопротивление 1,1 Ом. Если выбрать проволоку диаметром 0,5 мм, то сопротивление отрезка проволоки длиной 50 см составит 2,8 Ом.

Воспользовавшись преобразованными формулами законов Ома и Джоуля – Ленца, получим формулу для расчета величины питающего напряжения для станка резки пенопласта. Величина питающего напряжения будет равна корню из произведения величины потребляемой мощности и сопротивления проволоки. В результате вычислений получается, что необходим источник питания напряжением 11,7 В. При этом ток потребления от источника составит 11,7 А. Для того, чтобы найти величину тока, нужно потребляемую мощность разделить на величину напряжения. Поделив 125 Вт на 11,7 В получим ток 11,7 А.

В результате расчетов определено, что для нагрева нихромовой проволоки необходим источник питания переменного или постоянного тока, выдающий напряжение 11,7 В, и обеспечивающий ток нагрузки 12 А.

При уменьшении или увеличении длины проволоки, напряжение источника питания необходимо будет пропорционально уменьшить или увеличить соответственно. При этом величина тока не изменится.

Выполненный расчет является оценочным, так как не учтено переходное сопротивление в точках соединения проводов и сопротивление токоподводящих проводников. Поэтому оптимальный режим нагрева проволоки в конечном итоге приходится устанавливать непосредственно при резке пенопласта на приспособлении.

Электрические схемы источника электропитания

Подать питающее напряжение на нихромовую нить станка для резки пенопласта можно с помощью нескольких схем.

Схема с использованием ЛАТР

Наиболее простым вариантом источника электропитания станка для резки пенопласта является автотрансформатор с возможностью плавной регулировки выходного напряжения. Но эта схема имеет существенный недостаток, не имеет гальванической развязки с питающей сетью, так как выход ЛАТРа непосредственно соединен с электросетью. Поэтому при использовании ЛАТРа необходимо его подключать таким образом, чтобы общий провод был подключен к нулевому проводу питающей сети.

Электрическая схема подключения нихромовой спирали к ЛАТРу.

Что такое ЛАТР и как он устроен

Промышленностью выпускаются лабораторные автотрансформаторы, которые принято называть ЛАТР (лабораторный автотрансформатор регулируемый). Они подключаются непосредственно к бытовой электросети 220 В и в зависимости от типа ЛАТРа рассчитаны на различный ток нагрузки.

ЛАТР представляет собой тороидальный трансформатор с одной первичной обмоткой, по виткам которой при вращении расположенной сверху ручки, перемещается графитовое колесико, позволяющее снимать напряжение с любого участка обмотки. Таким способом на выходе ЛАТРа можно изменять напряжение от 0 до 240 В.

Провода к ЛАТРу подсоединяются с помощью клеммной колодки, на которой нарисована его электрическая схема и нанесены надписи «Сеть» и «Нагрузка». К клеммам «Сеть» подсоединяется шнур с вилкой, для подключения к бытовой сети. К клеммам «Нагрузка» подключается изделие, которое нужно запитать напряжением, отличным от бытовой электросети.

Внимание! Один из сетевых проводов, нижние клеммы на фото, соединен непосредственно с одним из проводов нагрузки. Таким образом, если на нижний вывод попадет фаза, то прикосновение к этой цепи будет опасным для человека.

Поэтому, в случае использования ЛАТРа для нагрева нихромовой проволоки станка резки пенопласта без развязывающего трансформатора, необходимо обязательно индикатором фазы проверить отсутствие фазы на общем проводе. Если на нем фаза, вынуть питающую ЛАТР вилку из розетки и, развернув ее на 180 градусов, опять вставить. Повторно проверить нижний провод на предмет наличия фазы.

Обычно на корпусе ЛАТРа имеется этикетка, на которой приводятся данные по его нагрузочной способности. На ЛАТРе, который изображен на фотографии, этикетка установлена непосредственно на регулировочной ручке.

Из этикетки следует, что это ЛАТР типа ЛОСН, выходное напряжение можно регулировать в диапазоне от 5 до 240 вольт, максимальный ток нагрузки составляет 2 А.

Если расчетный ток не превышает 8 А, то вполне можно запитать нихромовую проволоку через ЛАТР типа РНО 250-2.

Этот ЛАТР позволяет подключать нагрузку с током потребления до 8 А, но учитывая кратковременность работы приспособления для резки пенопласта, вполне выдержит ток нагрузки и 10 А.

Перед использованием ЛАТРа в качестве источника питания, необходимо проверить его работоспособность. Для этого нужно подключить к клеммам «Сеть» ЛАТРа сетевой шнур, а к клеммам «Нагрузка» мультиметр или стрелочный тестер, включенный в режим измерения переменного напряжения, на предел не менее 250 В. Установить ручку регулировки напряжения ЛАТРа в положение минимального напряжения. Вставить вилку в розетку.

Медленно поворачивая ручку ЛАТРа по часовой стрелке убедиться, что выходное напряжение увеличивается. Вернуть ручку ЛАТРа в нулевое положение. Вынуть вилку из сети и подключить провода, идущие от нихромовой нити к клеммам «Нагрузка». Вставить вилку сетевого шнура в розетку и индикатором фазы проверить отсутствие фазы на нихромовой проволоке. Разобравшись с фазой, можно, медленно поворачивая ручку ЛАТРа подать напряжение на нихромовую проволоку. При этом нужно учесть, что проволока нагревается постепенно, в течение нескольких секунд.

Внимание! Категорически запрещается прикасаться к проволоке рукой для проверки степени ее нагрева, когда на нее подано питающее напряжение! Температура проволоки очень высокая и можно получить ожег!

Когда проволока нагреется до чуть заметного свечения, можно приступать к резке пенопласта на станке.

Схема с использованием ЛАТР и понижающего трансформатора

Если величина тока, потребляемого нихромовой проволоки будет больше, чем может обеспечить ЛАТР, то придется дополнительно после него включить понижающий трансформатор по, ниже приведенной электрической схеме.

Как видите, в отличие от предыдущей схемы, к выходу ЛАТРа подключена сетевая обмотка силового трансформатора, нихромовая спираль подсоединена к вторичной выходной обмотке трансформатора. В этой схеме, благодаря развязывающему понижающему трансформатору, нихромовая спираль гальванически не связана с электрической сетью и поэтому безопасна для эксплуатации. В дополнение появилась возможность более плавной регулировки выходного напряжения и следовательно боле точной установки температуры резки пенопласта на станке.

Мощность трансформатора и напряжение на его вторичной обмотке берется на основании расчетов, выполненных по выше приведенной методике. Например, для предложенной конструкции станка для резки пенопласта, при диаметре нихромовой проволоки 0,8 мм и длине 50 см, источником электропитания послужил ЛАТР с выходным током 2 А с включенным после него понижающим трансформатором мощностью 150 Вт с напряжением на вторичной обмотке 12 В.

Схема с использованием понижающего трансформатора с отводами вторичной обмотки

Для электропитания нихромовой спирали резака для пенопласта можно применить трансформатор с отводами во вторичной обмотке. Это самый простой, надежный и безопасный вариант, особенно если станок для резки пенопласта будет использоваться регулярно. Ведь при резке пенопласта на приспособлении регулировать температуру нагрева нихромовой проволоки не нужно. Температура подбирается один раз при настройке станка. Поэтому подобрав нужное напряжение, провода от выводов нихромовой проволоки припаиваются к выводам вторичной обмотки трансформатора навсегда.

Не смотря на простоту и надежность этой схемы, стандартных готовых трансформаторов с отводами, да еще и на нужное напряжение нет. Придется найти подходящий трансформатор по напряжению и току на вторичной обмотке и отмотать лишние витки. Можно разобрать трансформатор и отмотав часть вторичной обмотки, намотать ее заново, но уже с отводами. Но эта работа требует знаний и опыта.

Схема с использованием понижающего трансформатора и токоограничивающего конденсатора

Установить стабильный выходной ток с вторичной обмотки трансформатора можно с помощью обыкновенных конденсаторов, включенных в первичную обмотку трансформатора.

Конденсатор должен быть рассчитан на напряжение не менее 300 В и иметь емкость, в зависимости от типа трансформатора и тока потребления нихромовой спиралью, порядка 50 мкФ. На таком принципе стабилизации тока на вторичной обмотке мной разработана Схема зарядного устройства для автомобильных аккумуляторов. Трансформатор должен быть соответствующей мощности и иметь 10% запас по напряжению.

Схема с использованием понижающего трансформатора и тиристорного регулятора мощности

Еще одна, несколько необычная схема регулятора температуры нагрева нихромовой проволоки, с помощью тиристора. Она подобна регулировке с помощью ЛАТРа с трансформатором, но малогабаритная. Классическая схема тиристорного регулятора для этой схемы не подходит, так как искажает форму синусоидального тока.

Поэтому необходима специальная схема тиристорного регулятора, выдающая на выходе синусоидальный сигнал и рассчитанная на работу с индуктивной нагрузкой.

Возможно включение тиристорного регулятора так же после вторичной обмотки трансформатора. В данном случае при выборе схемы регулятора следует учесть, что он должен быть рассчитан на ток, который необходим для разогрева нихромовой проволоки.

Схема с использованием любых электроприборов

Если ни одна из выше приведенных электрических схем разогрева нихромовой проволоки для приспособления резки пенопласта не может быть реализована, то предлагаю нестандартную схему ее разогрева.

При подключении любого электроприбора, он потребляет из электросети ток. Величина тока напрямую зависит от мощности электроприбора. Чем больше мощность, тем больше будет течь по проводам ток. Сопротивление куска нихромовой проволоки станка для резки пенопласта чуть больше сопротивления медных проводов и, следовательно, включение станка в разрыв одного из проводов электроприбора на работе его не скажется, а нихромовая проволока будет нагреваться. Этим и можно воспользоваться.

При использовании подключения станка для резки пенопласта по этой схеме, обязательно нужно проследить, чтобы нихромовой провод не был подключен непосредственно к фазному проводу электросети. Физически подключение лучше всего выполнить с помощью переходника, наподобие того, который описан для измерения силы тока потребления.

Подходят для работы в схеме электроприборы непрерывного действия, например обогреватель, пылесос. Оценить, какой ток потребляют электроприборы можно по таблице на странице сайта «Выбор сечения провода кабеля для электропроводки».

Если не известны электрические параметры нихромовой проволоки, то нужно сначала попробовать подключить маломощный электроприбор, например электрическую лампочку 200 Вт (потечет ток около 1 А), далее обогреватель на 1 кВт (4,5 А), и так увеличивать мощность подключаемых приборов, пока нихромовая проволока резака не нагреется до нужной температуры. Электроприборы можно подключать и параллельно.

К недостаткам последней схемы подключения нихромовой спирали следует отнести необходимость определения фазы для правильного подключения и низкий КПД (коэффициент полезного действия), киловатты электроэнергии будут расходоваться бесполезно.

Основные методы резки пенопласта

Наиболее лучшим вариантом теплоизоляции строения является пенопласт. Обычно для этих целей выбирают не плотную структуру, ввиду низкой стоимости. Это доставляет неудобства при резке, структура ячеек сыпется, а при небольшом усилии можно сломать конструкцию руками. Инструмент для резки пенопласта имеет различные модификации, продаются готовые варианты, также можно изготовить конструкцию своими руками.

Важно понимать, что структура пенопласта категорично относится на воздействие некоторых жидкостей. Ацетон или бензин разрушает структуру пенопласта, изделие придется изготавливать заново. Режимы температурной эксплуатации составляют не более 50 °.

Резка пенопласта в домашних условиях выполняется многими подручными инструментами. К примеру, при работе с маленькими заготовками самым простым способом является использование канцелярского ножа. Процесс происходит неточно, т.к. лезвие быстро тупится, для более качественной обработки нож возможно подогреть.

Каждое из приспособлений имеет преимущества и недостатки, перед резкой своими руками важно отметить характеристики пенопласта, подобрать инструмент для резки пенопласта по размеру.

Ручной станок для фигурной резки пенопласта

  1. В хозяйственных магазинах можно приобрести специальный инструмент – нож с нагревающимся лезвием. Работы данным приспособлением производятся от себя, во избежание соскальзывания и травматизма. Основные недостатки режущего ножа, что им можно обрезать материал определенной толщины, для ровной работы нужно грамотно разметить изделие, потратить на это время.
  2. Разновидностью нагревающегося ножа может быть паяльник со специальной насадкой. Отличается более высокой температурой нагрева, при работах необходимо быть осторожным, расплавленная капля при попадании на кожный покров не доставляет радостных ощущений.
  3. Сапожный нож для резки пенопласта используется с длинным лезвием до 40 см. Кончик ножа остается тупым, а широкое лезвие должно быть идеально заточено. Корректировку и заточку производят каждые 2 метра отрезанного изделия. Процесс будет сопровождаться визгом, можно исключить неприятные звуки применением наушников.
  4. Более толстые изделия можно разрезать ножовкой по дереву с мелкими зубчиками. Чем меньше уровень зубьев, тем лучше качество выходной детали, однако задиры и скосы все равно будут присутствовать. Способ не требует приложения особых изделий, зачастую применяется при длинных прямолинейных разрезах пенопласта.
  5. Наиболее популярным способом является резка пенопласта струной. Производительность данного метода приравнивается к промышленному оборудованию, достаточно соорудить небольшую конструкцию. Струна применяется при работе с пенопластом различной зернистости и плотности.

Некоторые случаи, за неимением ни одного из вышеперечисленных из режущих инструментов требует вмешательства электротехники. Болгарка используется с диском минимальной толщины. Работа подразумевает наличие повышенного шума, мусора от частиц пенопласта по всей территории.

Процессы работ утепления одного жилого помещения могут быть выполнены инструментом ручного типа. Проволока для воздействия на пенопласт используется на специальном стенде, предварительно подготовленным. Конструкция состоит из нихромовой проволоки, легко изготавливается своими руками. Схема подключения состоит из двух креплений, груза для натяжения и питания к сети. В тех случаях, когда объемы производства повышены используются специальные станки для обработки пенопласта.

Приобрести их можно в специализированных магазинах, а также изготовить самостоятельно.

Приспособления для резки пенопласта своими руками

Материалы домашнего утеплителя всегда доступны в продаже. Клеить пенопласт лучше всего на ровную стену, но при обнаружении выступов придется корректировать форму пенопласта. Резка пенопласта выполняется как покупным оборудованием, так и изготовленным самостоятельно.

Для построения конструкции важно подобрать параметры и чертежи. Тип работ также зависит на конструкцию и ее размеры. Резка пенопласта в домашних условиях осуществляется из подручных средств, главное грамотно подобрать материалы. Важно соблюдать требования техники безопасности, при резке возможно проскальзывание изделия, повреждение конечностей.

В процессе нагрева пенопласта происходит выброс испарений, при вдыхании они могут повредить слизистую систему работника.

Самодельный термический нож для резки

Корректировать форму изделий утеплителя, вырезать небольшие изделия и заготовки возможно термическим ножом. Для резки пенопласта понадобятся:

  • Батарея типа «крона» с выходным напряжением 9 вольт, или совокупность пальчиковых изделий.
  • Нихромовая леска растягивается между пластинами, длина не более 10 см.
  • Несколькими проводами подключатся концы проводов к батарее.

Простейший резак возможно собрать из подручных средств, он поможет снимать фаски углов, выполнять необходимую подгонку деталей из полипропилена. Необходимо установить кнопку питания, которая будет активировать устройство, это делается для удобной, безопасной работы.

Нихромовый резак своими руками

Изготовление своими руками подразумевает наличие определенных средств. Для того, чтобы качественно собрать инструмент для резки пенопласта, понадобятся:

  • нихромовая проволока, ее можно приобрести в магазинах радиодеталей необходимого размера;
  • понижающий трансформатор на 12 вольт, в качестве него выступает компьютерный блок питания или зарядное устройство АКБ автомобиля;
  • длинная спица;
  • реостат, дающий возможность регулировать силу тока;
  • электрические провода подходящей для соединения длинны.

Устройство может быть мобильным или закреплено на столе. Каркас изготавливается из дерева, проволока устанавливается на высоту 10-15 см, на регулировочные винты. Винты, которые осуществляют крепление нихромовой проволоки должны иметь подходящую длину, чтобы регулировать высоту на необходимый уровень. С одной стороны винта подвешивается груз, чтобы натянуть проволоку для прямого уровня отреза.

Воздействие тока приводит к раскалыванию проволоки, пенопласт легко подвергается температурным воздействиям. Края запаиваются, это препятствует распаду структуры материала. Резка пенопласта начинается после появления красного оттенка на проволоке, нет необходимости доводить накаливание до высокого уровня, в этих случаях ширина разреза будет слишком велика.

Нихромовый резак

При выполнении процедуры следует использовать средства индивидуальной защиты, маску, перчатки. В процессе обработки плавлением происходит выделение токсичных паров.

Резка производятся в помещении с хорошей вентиляцией или на улице.

Конструктивные особенности и принцип действия

Струна при нагреве расширяется, прибавляет в длине до 3%, резка провисшим резаком не будет качественной, поэтому к конструкции прибавляется специальный механизм. При действиях с малой частотой возможно применить пружину, она постепенно будет натягивать проволоку до нужного состояния. Массовое использование подразумевает быстрое растягивания, поэтому лучше использовать подвешенный грузик к одной стороне струны.

Конструкция нихромового резака

Устройство для резки пенопласта питается от источников энергии с выходным напряжением от 12 до 36 вольт. Наиболее удачным вариантом можно выделить лабораторный трансформатор. Устройство способно выдерживать высокие нагрузки, производить плавную регулировку выходного напряжения.

Специализированные станки и цены на них

Изготовленные станки поставляются на массовые производства. Существуют модификации с шестью режущими элементами, что позволяет быстро разрезать большой объем пенопласта за один прогон. Лазерные станки выполняют работы в архитектурных целях, способны вырезать различные формы, материалы по толщине.

Специализированный станок для резки пенопластин

Станки имеют отличные характеристики, могут иметь функции одновременной обработки многих элементов, обладают высокой производительностью. Цена на устройства высока, необходимо точно знать, в каких целях используется резак.

Фрп 01

Простая конструкция позволяет модифицировать устройство под различные формы и размеры заготовок пенопласта. Приспособления для резки пенопласта различного типа позволяют проводить ряд действий. Реализована возможность обреза погонных деталей, фигурных элементов, плит утепления и вывесок.

Резка выполняется станком посредством подключения к ЧПУ. Программа резки поставляется в комплекте, имеет различные настройки. Цена такого устройства начинается от 110 тысяч рублей, важно проверь перед покупкой функционал, надежность конструкции.

Срп «Контур»

Существуют модификации станков для производства элементов различной формы. Станок для резки пенополистирола управляется в ручную, имеет простую конструкцию, богатый функционал. Потребляемая мощность не высока, составляющие детали разборные, что позволяет не беспокоится за транспортировку.

Стоимость оборудования начинается от 40 тысяч рублей. Основное отличие рыночных моделей от изготовленных вручную, это проведенные испытания на безопасность, надёжность деталей.

Самостоятельное изготовление станка для резки

Полноценный станок возможно изготовить в домашних условиях. Для изготовления станка подбирается столешница и каркас нужной ширины, а также другие детали. Изготавливается станок для резки пенопласта своими руками из подручных средств, по аналогии к наименьшей нихромовой модификации. Имеется несколько модификаций и строений станков, реализуемых в соответствие с условиями деталей.

Ручная резка пенополистирола

Из всех вышеперечисленных способов, ручная резка пенопласта не такая затратная, обилие способов позволяет воздействовать на пенопластовые изделия в соответствие с поставленными задачами.

  1. Наиболее простой и без затратный способ, это резка большим заточенным ножам. Кончик ножа оставляется тупым, по ширине ножа должно быть распределено масло для смазки, скорость такого способа не велика, используется резка небольших объемов.
  2. Горячая руна позволяет быстро производить работы, но вредит здоровью.
  3. Резка холодной струной подобна воздействием пилы, необходимо только изготовить продуктивную конструкцию.
  4. Резка при помощи ножовки полотном.

Процесс ручной резки

Профессиональные методы подразумевают использование готового инструмента. Качественная и быстрая резка выполняется путем использования подходящих устройства.

Самодельный станок на столе

Если имеется большой стол и рабочее место, это значительно сэкономит время и силы, ведь при применении ручных способов материал крошится, портиться. Самодельный станок и его конструкция резки пенопласта выполняется путем использования нихромовой струны.

Источник питания используется подходящий, который выдает от 12 до 36 вольт. Доступно использование напряжение штатной сети, но только есть проволока покрыта никелем, такой способ вызывает удар током, который значительно ощущается человеком.

Станок для фигурной резки пенопласта

Сложные геометрические фигуры можно обрабатывать специальным станком. Устройство позволяет производить своими руками фигурную резку пенопласта. Конструкция выполняется по тем же принципам, только нихромовая проволока натянута вертикально.

Крепежный механизм подходит с одной стороны, что делает доступным перемещение изделия на столешнице.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Вам также может понравиться

Об авторе admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *