Корреляционный регрессионный анализ

КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ И ВОЗМОЖНОСТЬ ЕГО ПРИМЕНЕНИЯ ПРИ РАЗРАБОТКЕ ПРОГНОЗОВ

Изучение всех социально-экономических явлений в условиях современных реалии тесно связано с использованием различных наук, в особенности математики и статистики. Это обусловлено тем, что статистически-математические методы представляют из себя обширный комплекс различных методов и приёмов, позволяющий проводить детальный и всесторонний анализ первичной информации об исследуемом объекте, представленной в математическом виде.

Одним из значимых направлений анализа социально-экономических явлений является разработка прогноза с использованием полученных в процессе исследования результатов. Значимость прогнозирования обуславливается тем, что оно занимает важное место в процессе принятия управленческих решений. На основе прогноза определяются негативные изменения в будущем и способы их избежать, а также положительны исходы и возможные пути их достижения. Следовательно, качество и точность прогноза определяет эффективность управления хозяйствующим субъектом в перспективе. В этой связи важным шагом в процессе прогнозирования является выбор метода анализа текущих результатов, который определит методологию исследования.

Популярным методом анализа и прогнозирования развития социально-экономических явления, тесно связанных с математически выраженными показателями, является классический метод стохастического моделирования – корреляционно-регрессионный анализ. Он базируется на исследовании нескольких предполагаемо взаимосвязанных явлений. То есть предполагается наличие причинно-следственных связей, когда изменение одной переменной (факторной) влечёт изменение другой (результативной) .

Корреляционный анализ позволяет выявить наличие и тесноту взаимосвязи между исследуемыми явлениями. Основная цель корреляционного анализа – получение информации об одной переменной с помощью другой. Если это возможно, то можно говорить о том, что переменные коррелируют, т.е. изменение одной из случайных величин приводит к изменению математического ожидания другой. При этом изменение результативной переменной может происходить в положительную или отрицательную сторону. Это связано с тем, что связь между переменными может быть прямая или обратна. Тесноту данной связи определяет коэффициент корреляции, варьируемый от 1 до 0. Чем ближе данный коэффициент к 1, тем сильнее связь между признаками, и тем сильнее факторная переменная будет влиять на изменение результативной. Однако корреляция может быть не только между двумя переменными, она также бывает множественная и частная. Под множественной предполагается связь между двумя или более факторными признаками, а под частной – между результативным и одним факторным признаком, при фиксированном значении других факторных признаков.

Регрессионный анализ позволяет определить форму связи и модель, на основе которой строиться уравнение для расчёта результативной переменной. В зависимости от специфики исследуемых явлений связь может быть функциональной и стохастической. Функциональная подразумевает, что для одного определённого значения факторного признака соответствует одно или несколько строго определённых значений результативного признака. Стохастическая подразумевает, что определённым значения факторного признака соответствует множество значений результативного. Немаловажным для получения объективной информации при моделировании является соблюдение требования однородности информации. Данное требование предполагает исключение аномальных данных, которые резко отличаются от массива данных .

Корреляционный и регрессионный анализ связаны между собой. Первый позволяет определить наличие или отсутствие между исследуемыми признаками, а второй позволяет установить зависимость среднего значения какого-либо из признаков от другого или нескольких других признаков и определить модель взаимосвязи переменных.

Корреляционно-регрессионный анализ предполагает под собой определённый ряд действий, которые можно объединить в несколько общих этапов:

— изучение качественных характеристик, исследуемого объекта;

— построение модели связи;

— проверка построенной модели на адекватность и расчёт данных;

— анализ полученных результатов и их интерпретация с учётом специфики исследуемого объекта.

Особенным этапом анализа является интерпретация результатов исследования. Исследователю необходимо правильно пониматься полученные результаты, учитывая специфику исследуемого объекта, обобщённость используемых в анализе данных, логически возможные пути развития экономических процессов . От грамотности интерпретации в дальнейшем зависит эффективность и работоспособность построенной модели на практике.

Социально-экономические представляют собой многофакторные процессы, которые можно выразить в математических показателях, следовательно. Используя корреляционно-регрессионный анализ можно проводить исследования по выявлению однозначных причинных связей между анализируемыми явлениями для дальнейшей разработки прогноза.

Для примера выполним корреляционно-регрессионный анализ зависимости уровня безработицы от уровня инфляции. В качестве результативного признака (y) был выбран уровень безработицы, в качестве факторного (x) – уровень инфляции.

Таблица 1.

Уровень безработицы и инфляции за период 2001-2015 гг.

Год

Уровень безработицы, %

Уровень инфляция, %

18,6

7,9

15,1

8,2

7,8

11,7

7,1

10,9

7,1

11,9

6,2

13,3

8,3

8,8

7,3

6,1

6,5

6,6

5,5

6,5

5,5

11,4

5,2

12,9

5,6

5,4

После выполнения корреляционного анализа данных были получены следующие результаты:

Уравнение регрессии имеет следующий вид:

,

где e – неучтённые в рамках анализа факторы.

Из проведённого анализа можно сделать вывод о том, что между уровнем безработицы и инфляции существует прямая связь. Влияние уровня инфляции на безработицу незначительное. В 0,07% изменение уровня инфляции приводит к изменению уровня безработицы. Следовательно, точность подбора уравнения регрессии низка. Это можно связать с многофакторностью такого показателя как безработица. Для построения более точно модели следует включить в исследование большее количество факторов, обуславливающих изменение уровня безработицы. Однако, проведённый анализ позволяет нам сделать вывод о том, что повышение цен приведёт к незначительному росту уровня безработицы.

Таким образом, прогнозирование дальнейшего развития социально-экономических явлений с помощью корреляционно-регрессионного анализа возможно благодаря обширной аналитической информации и системе показателей, полученной в результате анализа, которые позволяют наиболее полно охарактеризовать исследуемое явление.

Список литературы:

  1. Андреева И. В., Червякова М. Ю. Разработка методики прогнозирования с использованием корреляционно-регрессионного анализа // Экономический анализ: теория и практика. – 2013. – №3(19). – С. 58-61.
  2. Мантрова А. А., Золотова Л. В. Практика применения корреляционно-регрессионного анализа для выявления взаимосвязи социально-экономических процессов в экономике // Аспирант. – 2016. – №3(19). – С. 58-61.
  3. Социально-экономическая статистика: учебник / под ред. М.Р. Ефимовой. –М.: Высшее образование, Юрайт-Издат, 2009. -590 с.
  4. Чернов Н. А. Выявление и оценка зависимости показателей социально-экономического развития территорий с помощью методов корреляционно-регрессионного анализа // Новая наука: проблемы и перспективы. – 2016. – №121-1. – С. 254-257.
  5. Эконометрика: Учебник / Под ред. И. И. Елисеевой, 2 -e изд., перераб. и доп. –М.: Финансы и статистика, 2005. -576 с.
  6. Официальный сайт: Федеральная служба государственной статистики . – Режим доступа: http://www.gks.ru (дата обращения: 14.12.17)

>Корреляционно-регрессионный анализ

Методы изучения взаимосвязи социально-экономических явлений с помощью корреляционно-регрессивного анализа

Общее представление о корреляционно-регрессивном анализе

Существующие между явлениями формы и виды связей весьма разнообразны по своей классификации. Предметом статистики являются только такие из них, которые имеют количественный характер и изучаются с помощью количественных методов. Рассмотрим метод корреляционно-регрессионного анализа, который является основным в изучении взаимосвязей явлений.

Данный метод содержит две свои составляющие части — корреляционный анализ и регрессионный анализ. Корреляционный анализ — это количественный метод определения тесноты и направления взаимосвязи между выборочными переменными величинами. Регрессионный анализ — это количественный метод определения вида математической функции в причинно-следственной зависимости между переменными величинами.

Для оценки силы связи в теории корреляции применяется шкала английского статистика Чеддока: слабая — от 0,1 до 0,3; умеренная — от 0,3 до 0,5; заметная — от 0,5 до 0,7; высокая — от 0,7 до 0,9; весьма высокая (сильная) — от 0,9 до 1,0. Она используется далее в примерах по теме.

Линейная корреляция

Данная корреляция характеризует линейную взаимосвязь в вариациях переменных. Она может быть парной (две коррелирующие переменные) или множественной (более двух переменных), прямой или обратной — положительной или отрицательной, когда переменные варьируют соответственно в одинаковых или разных направлениях.

Если переменные — количественные и равноценные в своих независимых наблюдениях при их общем количестве , то важнейшими эмпирическими мерами тесноты их линейной взаимосвязи являются коэффициент прямой корреляции знаков австрийского психолога Г.Т.Фехнера (1801-1887) и коэффициенты парной, чистой (частной) и множественной (совокупной) корреляции английского статистика-биометрика К.Пирсона (1857-1936).

Коэффициент парной корреляции знаков Фехнера определяет согласованность направлений в индивидуальных отклонениях переменных и от своих средних и . Он равен отношению разности сумм совпадающих () и несовпадающих () пар знаков в отклонениях и к сумме этих сумм:

Величина Кф изменяется от -1 до +1. Суммирование в (1) производится по наблюдениям, которые не указаны в суммах ради упрощения. Если какое-то одно отклонение или , то оно не входит в расчет. Если же сразу оба отклонения нулевые: , то такой случай считается совпадающим по знакам и входит в состав . В таблице 12.1. показана подготовка данных для расчета (1).

Таблица 12.1 Данные для расчета коэффициента Фехнера.

Магазин

Число работников, тыс. чел.

Товарооборот, у.е.

Отклонение от средних

и

Сравнение знаков и

совпа-дение
(Ск)

несов-падение (Нк)

0,2

3,1

+0,0

-0,9

0,1

3,1

-0,1

-0,9

0,4

5,0

+0,2

+1,0

0,2

4,4

+0,0

+0,4

0,1

4,4

-0,1

+0,4

Итого

1,0

20,0

По (1) имеем Кф = (3 — 2)/(3 + 2) = 0,20. Направление взаимосвязи в вариациях !!Средняя численность работников|численности работников]] и объема товарооборота — положительное (прямолинейное): знаки в отклонениях и и в своем большинстве (в 3 случаях из 5) совпадают между собой. Теснота взаимосвязи переменных по шкале Чеддока — слабая.

Коэффициенты парной, чистой (частной) и множественной (совокупной) линейной корреляции Пирсона, в отличие от коэффициента Фехнера, учитывают не только знаки, но и величины отклонений переменных. Для их расчета используют разные методы. Так, согласно методу прямого счета по несгруппированным данным, коэффициент парной корреляции Пирсона имеет вид:

Этот коэффициент также изменяется от -1 до +1. При наличии нескольких переменных рассчитывается коэффициент множественной (совокупной) линейной корреляции Пирсона. Для трех переменных x, y, z он имеет вид

Этот коэффициент изменяется от 0 до 1. Если элиминировать (совсем исключить или зафиксировать на постоянном уровне) влияние на и , то их «общая» связь превратится в «чистую», образуя чистый (частный) коэффициент линейной корреляции Пирсона:

Этот коэффициент изменяется от -1 до +1. Квадраты коэффициентов корреляции (2)-(4) называются коэффициентами (индексами) детерминации — соответственно парной, чистой (частной), множественной (совокупной):

Каждый из коэффициентов детерминации изменяется от 0 до 1 и оценивает степень вариационной определенности в линейной взаимосвязи переменных, показывая долю вариации одной переменной (y), обусловленную вариацией другой (других) — x и y. Многомерный случай наличия более трех переменных здесь не рассматривается.

Согласно разработкам английского статистика Р.Э. Фишера (1890-1962), статистическая значимость парного и чистого (частного) коэффициентов корреляции Пирсона проверяется в случае нормальности их распределения, на основании -распределения английского статистика В.С. Госсета (псевдоним «Стьюдент»; 1876-1937) с заданным уровнем вероятностной значимости и имеющейся степени свободы , где — число связей (факторных переменных). Для парного коэффициента имеем его среднеквадратическую ошибку и фактическое значение -критерия Стьюдента:

Для чистого коэффициента корреляции при расчете его вместо (n-2) надо брать , т.к. в этом случае имеется m=2 (две факторные переменные x и z). При большом числе n>100 вместо (n-2) или (n-3) в (6) можно брать n, пренебрегая точностью расчета.

Если tr > tтабл. , то коэффициент парной корреляции — общий или чистый является статистически значимым, а при tr ≤ tтабл. — незначимым.

Значимость коэффициента множественной корреляции R проверяется по F — критерию Фишера путем расчета его фактического значения

При FR > Fтабл. коэффициент R считается значимым с заданным уровнем значимости a и имеющихся степенях свободы и , а при Fr≤ Fтабл — незначимым.

В совокупностях большого объема n > 100 для оценки значимости всех коэффициентов Пирсона вместо критериев t и F применяется непосредственно нормальный закон распределения (табулированная функция Лапласа-Шеппарда).

Наконец, если коэффициенты Пирсона не подчиняются нормальному закону, то в качестве критерия их значимости используется Z — критерий Фишера, который здесь не рассматривается.

Условный пример расчета (2) — (7) дан в табл. 12.2, где взяты исходные данные табл.12.1 с добавлением к ним третьей переменной z — размера общей площади магазина (в 100 кв. м).

Таблица 12.2. Подготовка данных для расчета коэффициентов корреляции Пирсона

Мага-зин

Показатели

к

0,2

3,1

0,1

0,62

0,02

0,31

0,04

9,61

0,01

0,1

3,1

0,1

0,31

0,01

0,31

0,01

9,61

0,01

0,4

5,0

1,0

2,00

0,40

5,00

0,16

25,00

1,00

0,2

4,4

0,2

0,88

0,04

0,88

0,04

19,36

0,04

0,1

4,4

0,6

0,44

0,06

2,64

0,01

19,36

0,36

Итого

1,0

20,0

2,0

4,25

0,53

9,14

0,26

82,94

1,42

Согласно (2) — (5), коэффициенты линейной корреляции Пирсона равны:

Взаимосвязь переменных x и y является положительной, но не тесной, составляя по их парному коэффициенту корреляции величину и по чистому — величину и оценивалась по шкале Чеддока соответственно как «заметная» и «слабая».

Коэффициенты детерминации dxy =0,354 и dxy.z = 0,0037 свидетельствуют, что вариация у (товарооборота) обусловлена линейной вариацией x (численности работников) на 35,4% в их общей взаимосвязи и в чистой взаимосвязи — только на 0,37%. Такое положение обусловлено значительным влиянием на x и y третьей переменной z — занимаемой магазинами общей площади. Теснота ее взаимосвязи с ними составляет соответственно rxz=0,677 и ryz=0,844.

Коэффициент множественной (совокупной) корреляции трех переменных показывает, что теснота линейной взаимосвязи x и z c y составляет величину R = 0,844, оцениваясь по шкале Чеддока как «высокая», а коэффициент множественный детерминации — величину D=0,713, свидетельствуя, что 71,3 % всей вариации у (товарооборота) обусловлены совокупным воздействием на нее переменных x и z. Остальные 28,7% обусловлены воздействием на y других факторов или же криволинейной связью переменных y, x, z.

Для оценки значимости коэффициентов корреляции возьмем уровень значимости . По исходным данным имеем степени свободы для и для . По теоретической таблице находим соответственно tтабл.1. = 3,182 и tтабл.2. = 4,303. Для F-критерия имеем и и по таблице находим Fтабл. = 19,0. Фактические значения каждого критерия по (6) и (7) равны:

Все расчетные критерии меньше своих табличных значений: все коэффициенты корреляции Пирсона статистически незначимы.


Примеры решения задач по теме «Основы корреляционного анализа»

Задача 1 (анализ прямолинейной связи при парной корреляции). Имеются данные о квалификации и месячной выработке пяти рабочих цеха:

Для изучения связи между квалификацией рабочих и их выработкой определить линейное уравнение связи и коэффициент корреляции. Дать интерпретацию коэффициентам регрессии и корреляции.

Решение. Расширим предлагаемую таблицу.

Определим параметры уравнения прямой yx = a +bx. Для этого решим систему уравнений:

Здесь п = 5.

Значит коэффициент регрессии равен 18.

Поскольку в — положительное число, то имеется прямая связь между параметрами x и у.
а=92-4×18
а=20
Линейное уравнение связи имеет вид ух=20+18х.

Для определения тесноты (силы) связи между изучаемыми признаками определим величину коэффициента корреляции по формуле:

= (2020-20×460/5)/(√10×√3280) ≈ 180/181,11=0,99. Поскольку коэффициент корреляции больше 0,7, то связь в данном ряду сильная.

Задача 2. На предприятии цены на изделия снижены с 80 руб. за единицу до 60 руб. После снижения цен продажа возросла с 400 до 500 единиц в день. Определить абсолютную и относительную эластичность. Сделать оценку эластичности с целью возможности (или невозможности) дальнейшего снижения цен.

Решение. Рассчитаем показатели, позволяющие провести предварительный анализ эластичности:

Как видим, темпы снижения цены равны по абсолютной величине темпам увеличения спроса.

Абсолютную и относительную эластичность найдем по формулам:

= (500-400)/(60-80) =100/(-20) -5 — эластичность абсолютная

= (100:400)/(-20:80) = -1 — эластичность относительная

Модуль относительной эластичности равен 1. Это подтверждает тот факт, что темп роста спроса равен темпу снижения цены. В такой ситуации вычислим выручку, получаемую предприятием ранее и после снижения цены: 80*400 = 32 000 руб. в день, 60*500 = 30 000 руб. в день – как видим, выручка снизилась и дальнейшее снижение цен не является целесообразным.

Тема №9

a:

Отрицательный коэффициент корреляции означает, что для любых двух переменных X и Y увеличение X связано с уменьшением Y. Отрицательная корреляция демонстрирует связь между двумя переменными в том же путь положительный коэффициент корреляции, а относительные силы одинаковы. Другими словами, коэффициент корреляции 0,85 показывает ту же силу, что и коэффициент корреляции -0. 85.

Коэффициенты корреляции всегда равны между -1 и 1, где -1 показывает идеальную линейную отрицательную корреляцию, а 1 показывает идеальную линейную положительную корреляцию. Коэффициент корреляции, равный нулю или очень близкий к нулю, не показывает значимой взаимосвязи между переменными. На самом деле эти цифры редко встречаются, так как очень мало идеальных линейных отношений. Вместо этого числа, приближающиеся к этим значениям, используются для демонстрации силы отношения; например, 0. 92 или -0. 97 продемонстрировали бы, соответственно, очень сильную положительную и отрицательную корреляцию. Как и во всех статистических данных, демонстрирующих корреляцию, это не доказывает причинности.

Проще всего понять примеры отрицательных корреляций на примерах. Простым было бы измерение количества снегопада и температуры. По мере увеличения температуры уменьшается количество снегопада; это показывает отрицательную корреляцию и будет, кстати, иметь отрицательный коэффициент корреляции. Положительным коэффициентом корреляции будет соотношение между температурой и продажами мороженого; по мере роста температуры, так делают продажи мороженого. Это соотношение будет иметь положительный коэффициент корреляции. Отношение с коэффициентом корреляции, равным нулю или очень близким к нулю, — это продажа температуры и быстрого питания (или, по крайней мере, это то, что мы предположили бы).

Корреляционный анализ. Подробный пример решения

Целью корреляционного анализа является выявление оценки силы связи между случайными величинами (признаками), которые характеризует некоторый реальный процесс.
Задачи корреляционного анализа:
а) Измерение степени связности (тесноты, силы, строгости, интенсивности) двух и более явлений.
б) Отбор факторов, оказывающих наиболее существенное влияние на результативный признак, на основании измерения степени связности между явлениями. Существенные в данном аспекте факторы используют далее в регрессионном анализе.
в) Обнаружение неизвестных причинных связей.

Формы проявления взаимосвязей весьма разнообразны. В качестве самых общих их видов выделяют функциональную (полную) и корреляционную (неполную) связи.
Корреляционная связь проявляется в среднем, для массовых наблюдений, когда заданным значениям зависимой переменной соответствует некоторый ряд вероятностных значений независимой переменной. Связь называется корреляционной, если каждому значению факторного признака соответствует вполне определенное неслучайное значение результативного признака.
Наглядным изображением корреляционной таблицы служит корреляционное поле. Оно представляет собой график, где на оси абсцисс откладываются значения X, по оси ординат – Y, а точками показываются сочетания X и Y. По расположению точек можно судить о наличии связи.
Показатели тесноты связи дают возможность охарактеризовать зависимость вариации результативного признака от вариации признака-фактора.
Более совершенным показателем степени тесноты корреляционной связи является линейный коэффициент корреляции. При расчете этого показателя учитываются не только отклонения индивидуальных значений признака от средней, но и сама величина этих отклонений.

Ключевыми вопросами данной темы являются уравнения регрессионной связи между результативным признаком и объясняющей переменной, метод наименьших квадратов для оценки параметров регрессионной модели, анализ качества полученного уравнения регрессии, построение доверительных интервалов прогноза значений результативного признака по уравнению регрессии.

Использование графического метода.
Этот метод применяют для наглядного изображения формы связи между изучаемыми экономическими показателями. Для этого в прямоугольной системе координат строят график, по оси ординат откладывают индивидуальные значения результативного признака Y, а по оси абсцисс — индивидуальные значения факторного признака X.
Совокупность точек результативного и факторного признаков называется полем корреляции.
На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.
Линейное уравнение регрессии имеет вид y = bx + a + ε
Здесь ε — случайная ошибка (отклонение, возмущение).
Причины существования случайной ошибки:
1. Невключение в регрессионную модель значимых объясняющих переменных;
2. Агрегирование переменных. Например, функция суммарного потребления – это попытка общего выражения совокупности решений отдельных индивидов о расходах. Это лишь аппроксимация отдельных соотношений, которые имеют разные параметры.
3. Неправильное описание структуры модели;
4. Неправильная функциональная спецификация;
5. Ошибки измерения.
Так как отклонения εi для каждого конкретного наблюдения i – случайны и их значения в выборке неизвестны, то:
1) по наблюдениям xi и yi можно получить только оценки параметров α и β
2) Оценками параметров α и β регрессионной модели являются соответственно величины а и b, которые носят случайный характер, т.к. соответствуют случайной выборке;
Тогда оценочное уравнение регрессии (построенное по выборочным данным) будет иметь вид y = bx + a + ε, где ei – наблюдаемые значения (оценки) ошибок εi, а и b соответственно оценки параметров α и β регрессионной модели, которые следует найти.
Для оценки параметров α и β — используют МНК (метод наименьших квадратов). Решение ведем с использованием онлайн-калькулятора Уравнение регрессии.
Система нормальных уравнений.
a•n + b∑x = ∑y
a∑x + b∑x2 = ∑y•x
Для наших данных (см. таблицу расчетов ниже) система уравнений имеет вид:
46a + 17.3101 b = 18.3189
17.3101 a + 7.0687 b = 7.4742
Из первого уравнения выражаем а и подставим во второе уравнение:
Получаем b = 1.05, a = 0.0044
Уравнение регрессии: y = 1.05 x + 0.0044
1. Параметры уравнения регрессии.
Выборочные средние.



Выборочные дисперсии:


Среднеквадратическое отклонение


1.1. Коэффициент корреляции
Рассчитываем показатель тесноты связи. Таким показателем является выборочный линейный коэффициент корреляции, который рассчитывается по формуле:

Линейный коэффициент корреляции принимает значения от –1 до +1.
Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:
0.1 < rxy < 0.3: слабая;
0.3 < rxy < 0.5: умеренная;
0.5 < rxy < 0.7: заметная;
0.7 < rxy < 0.9: высокая;
0.9 < rxy < 1: весьма высокая;
В нашем примере связь между признаком Y фактором X высокая и прямая.
1.2. Уравнение регрессии (оценка уравнения регрессии).

Линейное уравнение регрессии имеет вид y = 1.05 x + 0.0044
Коэффициентам уравнения линейной регрессии можно придать экономический смысл.
Коэффициент b = 1.05 показывает среднее изменение результативного показателя (в единицах измерения у) с повышением или понижением величины фактора х на единицу его измерения. В данном примере с увеличением на 1 единицу y повышается в среднем на 1.05.
Коэффициент a = 0.0044 формально показывает прогнозируемый уровень у, но только в том случае, если х=0 находится близко с выборочными значениями.
Но если х=0 находится далеко от выборочных значений х, то буквальная интерпретация может привести к неверным результатам, и даже если линия регрессии довольно точно описывает значения наблюдаемой выборки, нет гарантий, что также будет при экстраполяции влево или вправо.
Подставив в уравнение регрессии соответствующие значения х, можно определить выровненные (предсказанные) значения результативного показателя y(x) для каждого наблюдения.
Связь между у и х определяет знак коэффициента регрессии b (если > 0 – прямая связь, иначе — обратная). В нашем примере связь прямая.
1.3. Коэффициент эластичности.
Коэффициенты регрессии (в примере b) нежелательно использовать для непосредственной оценки влияния факторов на результативный признак в том случае, если существует различие единиц измерения результативного показателя у и факторного признака х.
Для этих целей вычисляются коэффициенты эластичности и бета — коэффициенты.
Средний коэффициент эластичности E показывает, на сколько процентов в среднем по совокупности изменится результат у от своей средней величины при изменении фактора x на 1% от своего среднего значения.
Коэффициент эластичности находится по формуле:


Коэффициент эластичности меньше 1. Следовательно, при изменении Х на 1%, Y изменится менее чем на 1%. Другими словами — влияние Х на Y не существенно.
Бета – коэффициент показывает, на какую часть величины своего среднего квадратичного отклонения изменится в среднем значение результативного признака при изменении факторного признака на величину его среднеквадратического отклонения при фиксированном на постоянном уровне значении остальных независимых переменных:

Т.е. увеличение x на величину среднеквадратического отклонения Sx приведет к увеличению среднего значения Y на 0.9 среднеквадратичного отклонения Sy.
1.4. Ошибка аппроксимации.
Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации. Средняя ошибка аппроксимации — среднее отклонение расчетных значений от фактических:


Поскольку ошибка меньше 15%, то данное уравнение можно использовать в качестве регрессии.
Дисперсионный анализ.
Задача дисперсионного анализа состоит в анализе дисперсии зависимой переменной:
∑(yi — ycp)2 = ∑(y(x) — ycp)2 + ∑(y — y(x))2
где
∑(yi — ycp)2 — общая сумма квадратов отклонений;
∑(y(x) — ycp)2 — сумма квадратов отклонений, обусловленная регрессией («объясненная» или «факторная»);
∑(y — y(x))2 — остаточная сумма квадратов отклонений.
Теоретическое корреляционное отношение для линейной связи равно коэффициенту корреляции rxy.
Для любой формы зависимости теснота связи определяется с помощью множественного коэффициента корреляции:

Данный коэффициент является универсальным, так как отражает тесноту связи и точность модели, а также может использоваться при любой форме связи переменных. При построении однофакторной корреляционной модели коэффициент множественной корреляции равен коэффициенту парной корреляции rxy.
1.6. Коэффициент детерминации.
Квадрат (множественного) коэффициента корреляции называется коэффициентом детерминации, который показывает долю вариации результативного признака, объясненную вариацией факторного признака.
Чаще всего, давая интерпретацию коэффициента детерминации, его выражают в процентах.
R2= 0.89572 = 0.8023
т.е. в 80.23 % случаев изменения х приводят к изменению y. Другими словами — точность подбора уравнения регрессии — высокая. Остальные 19.77 % изменения Y объясняются факторами, не учтенными в модели.

Посмотреть расчетную таблицу
2. Оценка параметров уравнения регрессии.
2.3. Анализ точности определения оценок коэффициентов регрессии.
Несмещенной оценкой дисперсии возмущений является величина:


S2y = 0.0034 — необъясненная дисперсия (мера разброса зависимой переменной вокруг линии регрессии).

Sy = 0.0583 — стандартная ошибка оценки (стандартная ошибка регрессии).
Sa — стандартное отклонение случайной величины a.


Sb — стандартное отклонение случайной величины b.


2.4. Доверительные интервалы для зависимой переменной.
Экономическое прогнозирование на основе построенной модели предполагает, что сохраняются ранее существовавшие взаимосвязи переменных и на период упреждения.
Для прогнозирования зависимой переменной результативного признака необходимо знать прогнозные значения всех входящих в модель факторов.
Прогнозные значения факторов подставляют в модель и получают точечные прогнозные оценки изучаемого показателя.
(a + bxp ± ε)
где

Xp = 0.3763 • 10% = 0.0376
Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и Xp = 0.0376

(0.0044 + 1.05*0.0376 ± 0.056)
(-0.0123;0.0998)
С вероятностью 95% можно гарантировать, что значения Y при неограниченно большом числе наблюдений не выйдет за пределы найденных интервалов.
Индивидуальные доверительные интервалы для Y при данном значении X.
(a + bxi ± ε)
где

Посмотреть расчетную таблицу
С вероятностью 95% можно гарантировать, что значения Y при неограниченно большом числе наблюдений не выйдет за пределы найденных интервалов.
2.5. Проверка гипотез относительно коэффициентов линейного уравнения регрессии.
1) t-статистика. Критерий Стьюдента.
Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитываются t-критерий Стьюдента и доверительные интервалы каждого из показателей. Выдвигается гипотеза Н0 о случайной природе показателей, т.е. о незначимом их отличии от нуля.
Проверим гипотезу H0 о равенстве отдельных коэффициентов регрессии нулю (при альтернативе H1 не равно) на уровне значимости α=0.05.
tкрит (n-m-1;α/2) = (44;0.025) = 2.009


Поскольку 13.36 > 2.009, то статистическая значимость коэффициента регрессии b подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).


Поскольку 0.14 < 2.009, то статистическая значимость коэффициента регрессии a не подтверждается (принимаем гипотезу о равенстве нулю этого коэффициента).
Доверительный интервал для коэффициентов уравнения регрессии.
Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95% будут следующими:
(b — tкрит Sb; b + tкрит Sb)
(1.0467 — 2.009 • 0.0783; 1.0467 + 2.009 • 0.0783)
(0.8893;1.204)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
(a — tкрит Sa; a + tкрит Sa)
(0.0044 — 2.009 • 0.0307; 0.0044 + 2.009 • 0.0307)
(-0.0573;0.0661)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
2) F-статистика. Критерий Фишера.
Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели.
Если расчетное значение с k1=(m) и k2=(n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.

где m – число факторов в модели.
Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:
1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H0: R2=0 на уровне значимости α.
2. Далее определяют фактическое значение F-критерия:


где m=1 для парной регрессии.
3. Табличное значение определяется по таблицам распределения Фишера для заданного уровня значимости, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно 1 и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n-2.
Fтабл — это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости α. Уровень значимости α — вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно α принимается равной 0,05 или 0,01.
4. Если фактическое значение F-критерия меньше табличного, то говорят, что нет основания отклонять нулевую гипотезу.
В противном случае, нулевая гипотеза отклоняется и с вероятностью (1-α) принимается альтернативная гипотеза о статистической значимости уравнения в целом.
Табличное значение критерия со степенями свободы k1=1 и k2=44, Fтабл = 4
Поскольку фактическое значение F > Fтабл, то коэффициент детерминации статистически значим (найденная оценка уравнения регрессии статистически надежна).
Связь между F-критерием Фишера и t-статистикой Стьюдента выражается равенством:

Проверка на наличие автокорреляции остатков.
Важной предпосылкой построения качественной регрессионной модели по МНК является независимость значений случайных отклонений от значений отклонений во всех других наблюдениях. Это гарантирует отсутствие коррелированности между любыми отклонениями и, в частности, между соседними отклонениями.
Автокорреляция (последовательная корреляция) определяется как корреляция между наблюдаемыми показателями, упорядоченными во времени (временные ряды) или в пространстве (перекрестные ряды). Автокорреляция остатков (отклонений) обычно встречается в регрессионном анализе при использовании данных временных рядов и очень редко при использовании перекрестных данных.
В экономических задачах значительно чаще встречается положительная автокорреляция, нежели отрицательная автокорреляция. В большинстве случаев положительная автокорреляция вызывается направленным постоянным воздействием некоторых неучтенных в модели факторов.
Отрицательная автокорреляция фактически означает, что за положительным отклонением следует отрицательное и наоборот. Такая ситуация может иметь место, если ту же зависимость между спросом на прохладительные напитки и доходами рассматривать по сезонным данным (зима-лето).
Среди основных причин, вызывающих автокорреляцию, можно выделить следующие:
1. Ошибки спецификации. Неучет в модели какой-либо важной объясняющей переменной либо неправильный выбор формы зависимости обычно приводят к системным отклонениям точек наблюдения от линии регрессии, что может обусловить автокорреляцию.
2. Инерция. Многие экономические показатели (инфляция, безработица, ВНП и т.д.) обладают определенной цикличностью, связанной с волнообразностью деловой активности. Поэтому изменение показателей происходит не мгновенно, а обладает определенной инертностью.
3. Эффект паутины. Во многих производственных и других сферах экономические показатели реагируют на изменение экономических условий с запаздыванием (временным лагом).
4. Сглаживание данных. Зачастую данные по некоторому продолжительному временному периоду получают усреднением данных по составляющим его интервалам. Это может привести к определенному сглаживанию колебаний, которые имелись внутри рассматриваемого периода, что в свою очередь может служить причиной автокорреляции.
Последствия автокорреляции схожи с последствиями гетероскедастичности: выводы по t- и F-статистикам, определяющие значимость коэффициента регрессии и коэффициента детерминации, возможно, будут неверными.

Обнаружение автокорреляции
1. Графический метод
Есть ряд вариантов графического определения автокорреляции. Один из них увязывает отклонения εi с моментами их получения i. При этом по оси абсцисс откладывают либо время получения статистических данных, либо порядковый номер наблюдения, а по оси ординат – отклонения εi (либо оценки отклонений).
Естественно предположить, что если имеется определенная связь между отклонениями, то автокорреляция имеет место. Отсутствие зависимости скорее всего будет свидетельствовать об отсутствии автокорреляции.
Автокорреляция становится более наглядной, если построить график зависимости εi от εi-1

2. Коэффициент автокорреляции.

Если коэффициент автокорреляции rei < 0.5, то есть основания утверждать, что автокорреляция отсутствует.

3. Критерий Дарбина-Уотсона.
Этот критерий является наиболее известным для обнаружения автокорреляции.
При статистическом анализе уравнения регрессии на начальном этапе часто проверяют выполнимость одной предпосылки: условия статистической независимости отклонений между собой. При этом проверяется некоррелированность соседних величин εi.

Посмотреть расчетную таблицу
Для анализа коррелированности отклонений используют статистику Дарбина-Уотсона:


Критические значения d1 и d2 определяются на основе специальных таблиц для требуемого уровня значимости α, числа наблюдений n = 46 и количества объясняющих переменных m=1.
Автокорреляция отсутствует, если выполняется следующее условие:
d1 < DW и d2 < DW < 4 — d2.
Не обращаясь к таблицам, можно пользоваться приблизительным правилом и считать, что автокорреляция остатков отсутствует, если 1.5 < DW < 2.5. Поскольку 1.5 < 2.09 < 2.5, то автокорреляция остатков отсутствует.
Для более надежного вывода целесообразно обращаться к табличным значениям.
По таблице Дарбина-Уотсона для n=46 и k=1 (уровень значимости 5%) находим: d1 = 1.50; d2 = 1.59.
Поскольку 1.50 < 2.09 и 1.59 < 2.09 < 4 — 1.59, то автокорреляция остатков отсутствует.

Проверка наличия гетероскедастичности.
1) Методом графического анализа остатков.
В этом случае по оси абсцисс откладываются значения объясняющей переменной X, а по оси ординат либо отклонения ei, либо их квадраты e2i.
Если имеется определенная связь между отклонениями, то гетероскедастичность имеет место. Отсутствие зависимости скорее всего будет свидетельствовать об отсутствии гетероскедастичности.

2) При помощи теста ранговой корреляции Спирмена.
Коэффициент ранговой корреляции Спирмена.
Присвоим ранги признаку ei и фактору X. Найдем сумму разности квадратов d2.
По формуле вычислим коэффициент ранговой корреляции Спирмена.

Посмотреть расчетную таблицу

Связь между признаком ei и фактором X слабая и обратная

Оценка коэффициента ранговой корреляции Спирмена.
Значимость коэффициента ранговой корреляции Спирмена

По таблице Стьюдента находим tтабл:
tтабл (n-m-1;α/2) = (44;0.05/2) = 2.009
Поскольку Tнабл < tтабл , то принимаем гипотезу о равенстве 0 коэффициента ранговой корреляции. Другими словами, коэффициент ранговой корреляции статистически — не значим.
Интервальная оценка для коэффициента корреляции (доверительный интервал).

Доверительный интервал для коэффициента ранговой корреляции
r(-0.3194;0.2727)
Проверим гипотезу H0: гетероскедастичность отсутствует.
Поскольку 2.009 > 0.16, то гипотеза об отсутствии гетероскедастичности принимается.

Пример 2

Система нормальных уравнений.
a•n + b∑x = ∑y
a∑x + b∑x2 = ∑y•x
Для наших данных система уравнений имеет вид
30a + 5763 b = 21460
5763 a + 1200261 b = 3800360
Из первого уравнения выражаем а и подставим во второе уравнение:
Получаем b = -3.46, a = 1379.33
Уравнение регрессии:
y = -3.46 x + 1379.33

2. Расчет параметров уравнения регрессии.
Выборочные средние.



Выборочные дисперсии:


Среднеквадратическое отклонение


1.1. Коэффициент корреляции
Ковариация.

Рассчитываем показатель тесноты связи. Таким показателем является выборочный линейный коэффициент корреляции, который рассчитывается по формуле:

Линейный коэффициент корреляции принимает значения от –1 до +1.
Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:
0.1 < rxy < 0.3: слабая;
0.3 < rxy < 0.5: умеренная;
0.5 < rxy < 0.7: заметная;
0.7 < rxy < 0.9: высокая;
0.9 < rxy < 1: весьма высокая;
В нашем примере связь между признаком Y фактором X высокая и обратная.
Кроме того, коэффициент линейной парной корреляции может быть определен через коэффициент регрессии b:

1.2. Уравнение регрессии (оценка уравнения регрессии).

Линейное уравнение регрессии имеет вид y = -3.46 x + 1379.33

Коэффициент b = -3.46 показывает среднее изменение результативного показателя (в единицах измерения у) с повышением или понижением величины фактора х на единицу его измерения. В данном примере с увеличением на 1 единицу y понижается в среднем на -3.46.
Коэффициент a = 1379.33 формально показывает прогнозируемый уровень у, но только в том случае, если х=0 находится близко с выборочными значениями.
Но если х=0 находится далеко от выборочных значений х, то буквальная интерпретация может привести к неверным результатам, и даже если линия регрессии довольно точно описывает значения наблюдаемой выборки, нет гарантий, что также будет при экстраполяции влево или вправо.
Подставив в уравнение регрессии соответствующие значения х, можно определить выровненные (предсказанные) значения результативного показателя y(x) для каждого наблюдения.
Связь между у и х определяет знак коэффициента регрессии b (если > 0 – прямая связь, иначе — обратная). В нашем примере связь обратная.
1.3. Коэффициент эластичности.
Коэффициенты регрессии (в примере b) нежелательно использовать для непосредственной оценки влияния факторов на результативный признак в том случае, если существует различие единиц измерения результативного показателя у и факторного признака х.
Для этих целей вычисляются коэффициенты эластичности и бета — коэффициенты.
Средний коэффициент эластичности E показывает, на сколько процентов в среднем по совокупности изменится результат у от своей средней величины при изменении фактора x на 1% от своего среднего значения.
Коэффициент эластичности находится по формуле:


Коэффициент эластичности меньше 1. Следовательно, при изменении Х на 1%, Y изменится менее чем на 1%. Другими словами — влияние Х на Y не существенно.
Бета – коэффициент показывает, на какую часть величины своего среднего квадратичного отклонения изменится в среднем значение результативного признака при изменении факторного признака на величину его среднеквадратического отклонения при фиксированном на постоянном уровне значении остальных независимых переменных:

Т.е. увеличение x на величину среднеквадратического отклонения Sx приведет к уменьшению среднего значения Y на 0.74 среднеквадратичного отклонения Sy.
1.4. Ошибка аппроксимации.
Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации. Средняя ошибка аппроксимации — среднее отклонение расчетных значений от фактических:


Поскольку ошибка меньше 15%, то данное уравнение можно использовать в качестве регрессии.
Дисперсионный анализ.
Задача дисперсионного анализа состоит в анализе дисперсии зависимой переменной:
∑(yi — ycp)2 = ∑(y(x) — ycp)2 + ∑(y — y(x))2
где
∑(yi — ycp)2 — общая сумма квадратов отклонений;
∑(y(x) — ycp)2 — сумма квадратов отклонений, обусловленная регрессией («объясненная» или «факторная»);
∑(y — y(x))2 — остаточная сумма квадратов отклонений.
Теоретическое корреляционное отношение для линейной связи равно коэффициенту корреляции rxy.
Для любой формы зависимости теснота связи определяется с помощью множественного коэффициента корреляции:

Данный коэффициент является универсальным, так как отражает тесноту связи и точность модели, а также может использоваться при любой форме связи переменных. При построении однофакторной корреляционной модели коэффициент множественной корреляции равен коэффициенту парной корреляции rxy.
1.6. Коэффициент детерминации.
Квадрат (множественного) коэффициента корреляции называется коэффициентом детерминации, который показывает долю вариации результативного признака, объясненную вариацией факторного признака.
Чаще всего, давая интерпретацию коэффициента детерминации, его выражают в процентах.
R2= -0.742 = 0.5413
т.е. в 54.13 % случаев изменения х приводят к изменению y. Другими словами — точность подбора уравнения регрессии — средняя. Остальные 45.87 % изменения Y объясняются факторами, не учтенными в модели.

Посмотреть расчетную таблицу
2. Оценка параметров уравнения регрессии.
2.1. Значимость коэффициента корреляции.

По таблице Стьюдента с уровнем значимости α=0.05 и степенями свободы k=28 находим tкрит:
tкрит (n-m-1;α/2) = (28;0.025) = 2.048
где m = 1 — количество объясняющих переменных.
Если tнабл > tкритич, то полученное значение коэффициента корреляции признается значимым (нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается).
Поскольку tнабл > tкрит, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициент корреляции статистически — значим
В парной линейной регрессии t2r = t2b и тогда проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.

2.3. Анализ точности определения оценок коэффициентов регрессии.
Несмещенной оценкой дисперсии возмущений является величина:

S2y = 33699.64 — необъясненная дисперсия (мера разброса зависимой переменной вокруг линии регрессии).

Sy = 183.57 — стандартная ошибка оценки (стандартная ошибка регрессии).
Sa — стандартное отклонение случайной величины a.

Sb — стандартное отклонение случайной величины b.

2.4. Доверительные интервалы для зависимой переменной.
Экономическое прогнозирование на основе построенной модели предполагает, что сохраняются ранее существовавшие взаимосвязи переменных и на период упреждения.
Для прогнозирования зависимой переменной результативного признака необходимо знать прогнозные значения всех входящих в модель факторов.
Прогнозные значения факторов подставляют в модель и получают точечные прогнозные оценки изучаемого показателя.
(a + bxp ± ε)
где

Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и Xp = 211

(1379.33 -3.46*211 ± 72.48)
(577.53;722.49)
С вероятностью 95% можно гарантировать, что значения Y при неограниченно большом числе наблюдений не выйдет за пределы найденных интервалов.
Индивидуальные доверительные интервалы для Y при данном значении X.
(a + bxi ± ε)
где

Посмотреть расчетную таблицу
С вероятностью 95% можно гарантировать, что значения Y при неограниченно большом числе наблюдений не выйдет за пределы найденных интервалов.
2.5. Проверка гипотез относительно коэффициентов линейного уравнения регрессии.
1) t-статистика. Критерий Стьюдента.
tкрит (n-m-1;α/2) = (28;0.025) = 2.048

Поскольку 5.75 > 2.048, то статистическая значимость коэффициента регрессии b подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).

Поскольку 11.47 > 2.048, то статистическая значимость коэффициента регрессии a подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).
Доверительный интервал для коэффициентов уравнения регрессии.
(-3.4565 — 2.048 • 0.6; -3.4565 + 2.048 • 0.6)
(-4.6881;-2.2249)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
(a — tкрит Sa; a + tкрит Sa)
(1379.3255 — 2.048 • 120.28; 1379.3255 + 2.048 • 120.28)
(1132.9836;1625.6673)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
2) F-статистика. Критерий Фишера.

где m – число факторов в модели.


где m=1 для парной регрессии.
Табличное значение критерия со степенями свободы k1=1 и k2=28, Fтабл = 4.2
Поскольку фактическое значение F > Fтабл, то коэффициент детерминации статистически значим (найденная оценка уравнения регрессии статистически надежна).

Проверка на наличие автокорреляции остатков.


Рисунок – Обнаружение автокорреляции графическим методом

Судя по графику, определенной зависимости не наблюдается.
2. Коэффициент автокорреляции.

Если коэффициент автокорреляции rei < 0.5, то есть основания утверждать, что автокорреляция отсутствует.
Выборочные средние.



Выборочные дисперсии:


Среднеквадратическое отклонение



Поскольку, rei < 0.1, то можно с уверенностью сказать, что автокорреляция отсутствует.
3. Критерий Дарбина-Уотсона.

Корреляционный анализ (стр. 1 из 5)

КУРСОВАЯ РАБОТА

Тема: Корреляционный анализ

Задание: Рассчитать полным факторным экспериментом влияние давления, жирности и кислотности на качество продукции

СОДЕРЖАНИЕ

Введение

1. Корреляционный анализ

1.1 Понятие корреляционной связи

1.2 Общая классификация корреляционных связей

1.3 Корреляционные поля и цель их построения

1.4 Этапы корреляционного анализа

1.5 Коэффициенты корреляции

1.6 Нормированный коэффициент корреляции Браве-Пирсона

1.7 Коэффициент ранговой корреляции Спирмена

1.8 Основные свойства коэффициентов корреляции

1.9 Проверка значимости коэффициентов корреляции

1.10 Критические значения коэффициента парной корреляции

2. Планирование многофакторного эксперимента

2.1 Условие задачи

2.2 Определение центр плана (основной уровень) и уровня варьирования факторов

2.3 Построение матрицы планирования

2.4 Проверка однородности дисперсии и равноточности измерения в разных сериях

2.5 Коэффициенты уравнения регрессии

2.6 Дисперсия воспроизводимости

2.7 Проверка значимости коэффициентов уравнения регрессии

2.8 Проверка адекватности уравнения регрессии

Заключение

Список литературы

ВВЕДЕНИЕ

Планирование эксперимента -математико-статистическая дисциплина, изучающая методы рациональной организации экспериментальных исследований — от оптимального выбора исследуемых факторов и определения собственно плана эксперимента в соответствии с его целью до методов анализа результатов. Начало планирования эксперимента положили труды английского статистика Р.Фишера (1935), подчеркнувшего, что рациональное планирование экспериментадаёт не менее существенный выигрыш в точности оценок, чем оптимальная обработка результатов измерений. В 60-х годах 20 века сложилась современная теория планирования эксперимента. Её методы тесно связаны с теорией приближения функций и математическим программированием. Построены оптимальные планы и исследованы их свойства для широкого класса моделей.

Планирование эксперимента – выбор плана эксперимента, удовлетворяющего заданным требованиям, совокупность действий направленных на разработку стратегии экспериментирования (от получения априорной информации до получения работоспособной математической модели или определения оптимальных условий). Это целенаправленное управление экспериментом, реализуемое в условиях неполного знания механизма изучаемого явления.

В процессе измерений, последующей обработки данных, а также формализации результатов в виде математической модели, возникают погрешности и теряется часть информации, содержащейся в исходных данных. Применение методов планирования эксперимента позволяет определить погрешность математической модели и судить о ее адекватности. Если точность модели оказывается недостаточной, то применение методов планирования эксперимента позволяет модернизировать математическую модель с проведением дополнительных опытов без потери предыдущей информации и с минимальными затратами.

Цель планирования эксперимента – нахождение таких условий и правил проведения опытов при которых удается получить надежную и достоверную информацию об объекте с наименьшей затратой труда, а также представить эту информацию в компактной и удобной форме с количественной оценкой точности.

Среди основных методов планирования, применяемых на разных этапах исследования, используют:

— планирование отсеивающего эксперимента, основное значение которого выделение из всей совокупности факторов группы существенных факторов, подлежащих дальнейшему детальному изучению;

— планирование эксперимента для дисперсионного анализа, т.е. составление планов для объектов с качественными факторами;

— планирование регрессионного эксперимента, позволяющего получать регрессионные модели (полиномиальные и иные);

— планирование экстремального эксперимента, в котором главная задача – экспериментальная оптимизация объекта исследования;

— планирование при изучении динамических процессов и т.д.

Целью изучения дисциплины является подготовка студентов к производственно-технической деятельности по специальности с применением методов теории планирования и современных информационных технологий.

Задачи дисциплины: изучение современных методов планирования, организации и оптимизации научного и промышленного эксперимента, проведения экспериментов и обработки полученных результатов.

1. КОРРЕЛЯЦИОННЫЙ АНАЛИЗ

1.1 Понятие корреляционной связи

Исследователя нередко интересует, как связаны между собой две или большее количество переменных в одной или нескольких изучаемых выборках. Например, может ли рост влиять на вес человека или может ли давление влиять на качество продукции?

Такого рода зависимость между переменными величинами называется корреляционной, или корреляцией. Корреляционная связь — это согласованное изменение двух признаков, отражающее тот факт, что изменчивость одного признака находится в соответствии с изменчивостью другого.

Известно, например, что в среднем между ростом людей и их весом наблюдается положительная связь, и такая, что чем больше рост, тем больше вес человека. Однако из этого правила имеются исключения, когда относительно низкие люди имеют избыточный вес, и, наоборот, астеники, при высоком росте имеют малый вес. Причиной подобных исключений является то, что каждый биологический, физиологический или психологический признак определяется воздействием многих факторов: средовых, генетических, социальных, экологических и т.д.

Корреляционные связи — это вероятностные изменения, которые можно изучать только на представительных выборках методами математической статистики. Оба термина — корреляционная связь и корреляционная зависимость — часто используются как синонимы. Зависимость подразумевает влияние, связь — любые согласованные изменения, которые могут объясняться сотнями причин. Корреляционные связи не могут рассматриваться как свидетельство причинно-следственной зависимости, они свидетельствуют лишь о том, что изменениям одного признака, как правило, сопутствуют определенные изменения другого.

Корреляционная зависимость — это изменения, которые вносят значения одного признака в вероятность появления разных значений другого признака.

Задача корреляционного анализа сводится к установлению направления (положительное или отрицательное) и формы (линейная, нелинейная) связи между варьирующими признаками, измерению ее тесноты, и, наконец, к проверке уровня значимости полученных коэффициентов корреляции.

Корреляционные связи различаютсяпо форме, направлению и степени (силе).

По форме корреляционная связь может быть прямолинейной или криволинейной. Прямолинейной может быть, например, связь между количеством тренировок на тренажере и количеством правильно решаемых задач в контрольной сессии. Криволинейной может быть, например, связь между уровнем мотивации и эффективностью выполнения задачи (рисунок 1). При повышении мотивации эффективность выполнения задачи сначала возрастает, затем достигается оптимальный уровень мотивации, которому соответствует максимальная эффективность выполнения задачи; дальнейшему повышению мотивации сопутствует уже снижение эффективности.

Рисунок 1 — Связь между эффективностью решения задачи и силой мотивационной тенденции

По направлению корреляционная связь может быть положительной («прямой») и отрицательной («обратной»). При положительной прямолинейной корреляции более высоким значениям одного признака соответствуют более высокие значения другого, а более низким значениям одного признака — низкие значения другого (рисунок 2). При отрицательной корреляции соотношения обратные (рисунок 3). При положительной корреляции коэффициент корреляции имеет положительный знак, при отрицательной корреляции — отрицательный знак.

Рисунок 2 – Прямая корреляция

Рисунок 3 – Обратная корреляция

Рисунок 4 – Отсутствие корреляции

Степень, сила или теснота корреляционной связи определяется по величине коэффициента корреляции. Сила связи не зависит от ее направленности и определяется по абсолютному значению коэффициента корреляции.

1.2 Общая классификация корреляционных связей

В зависимости от коэффициента корреляции различают следующие корреляционные связи:

— сильная, или тесная при коэффициенте корреляции r>0,70;

— средняя (при 0,50<r<0,69);

— умеренная (при 0,30<r<0,49);

— слабая (при 0,20<r<0,29);

— очень слабая (при r<0,19).

1.3 Корреляционные поля и цель их построения

Корреляция изучается на основании экспериментальных данных, представляющих собой измеренные значения (xi , yi ) двух признаков. Если экспериментальных данных немного, то двумерное эмпирическое распределение представляется в виде двойного ряда значений xi и yi . При этом корреляционную зависимость между признаками можно описывать разными способами. Соответствие между аргументом и функцией может быть задано таблицей, формулой, графиком и т. д.

Корреляционный анализ, как и другие статистические методы, основан на использовании вероятностных моделей, описывающих поведение исследуемых признаков в некоторой генеральной совокупности, из которой получены экспериментальные значения xi и yi . Когда исследуется корреляция между количественными признаками, значения которых можно точно измерить в единицах метрических шкал (метры, секунды, килограммы и т.д.), то очень часто принимается модель двумерной нормально распределенной генеральной совокупности. Такая модель отображает зависимость между переменными величинами xi и yi графически в виде геометрического места точек в системе прямоугольных координат. Эту графическую зависимость называются также диаграммой рассеивания или корреляционным полем.
Данная модель двумерного нормального распределения (корреляционное поле) позволяет дать наглядную графическую интерпретацию коэффициента корреляции, т.к. распределение в совокупности зависит от пяти параметров: μx , μy – средние значения (математические ожидания); σx ,σy – стандартные отклонения случайных величин Х и Y и р – коэффициент корреляции, который является мерой связи между случайными величинами Х и Y.
Если р = 0, то значения, xi , yi , полученные из двумерной нормальной совокупности, располагаются на графике в координатах х, у в пределах области, ограниченной окружностью (рисунок 5, а). В этом случае между случайными величинами Х и Y отсутствует корреляция и они называются некоррелированными. Для двумерного нормального распределения некоррелированность означает одновременно и независимость случайных величин Х и Y.

Вам также может понравиться

Об авторе admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *