Как выбрать телескоп

Содержание

ТОП 7 лучших телескопов по отзывам покупателей

На современном рынке в России телескопам отведена не слишком большая ниша, поскольку они не особо популярны. Но, тем не менее, ассортимент довольно обширен и представлен у таких производителей, как:

  • Veber;
  • Sky-Watcher;
  • LEVENHUK;
  • Celestron;
  • BRESSER.

Далее будет рассмотрены модели данных производителей, которые пользуются наибольшей популярностью и имеют хорошие отзывы от их владельцев.

Veber УМКА 76/300

Самый недорого телескоп в нашем рейтинге, который отлично подойдет для начинающих. Классическая конструкция, рефлектор Ньютона на турельной монтировке Добсона. При своих весьма небольших габаритах (длиной сама трубка 30 см и 7.6 см диаметр) может создаться такое неоднозначное впечатление, что телескоп предназначен для любопытного и любознательного ребенка, но стоит взглянуть в него, как это впечатление сразу же развеется. С пятнадцатикратным увеличением с легкостью можно поймать в фокус любой предмет даже при свете дня. Также он может использоваться в качестве настольной подзорной трубки.

Аппарат отлично укомплектован, с ним поступают в ваше пользование 2 окуляра на 8 и на 20 миллиметров, двухкратная линза Барлоу, вследствие чего кратность увеличения меняется легкой сменой окуляров.

Качественная сборка, оптимально подобранные материалы и комплект линз помогут с легкость разглядеть любую из имеющихся в солнечной системе планет. Плюсом в комплекте идет фильтр, специально предназначенный для наблюдения за луной.

Veber УМКА 76/300

  • Приемлемая стоимость.
  • Хорошее качество сборки.
  • Удобно наблюдать за звездами, не устают глаза.
  • Специальный фильтр для наблюдения за луной, который не искажает изображение.
  • Интересный дизайн.
  • Нет возможности покупки дополнительных аксессуаров, чтобы улучшить кратность увеличения.

Sky-Watcher BK 705AZ2

Малогабаритный ахроматический рефрактор отлично подойдет новичкам в астрономии. Благодаря ему вам станут доступны для ознакомления многие планеты, находящиеся в солнечной системе, и, конечно же, спутник луна.

Благодаря малогабаритности, телескоп можно перемещать, например, для рассмотрения различных ландшафтов планет, которые не получается хорошо изучить из дома, или же вам просто захотелось полюбоваться кометами на свежем воздухе. Инструмент изготовлен из качественных материалов и прост в эксплуатации.

Объектив ахроматический, имеет диаметр 7 сантиметров, но при этом формует качественное яркое и четкое изображение с минимизацией хромато аберраций. На сами линзы многослойно нанесено специальное осветляющее покрытие, благодаря чему картинка четкая и насыщенная.

Sky-Watcher BK 705AZ2

  • Хорошая комплектация.
  • Качественная цветопередача.
  • Отличная кратность увеличения.
  • Дизайн.
  • Нужен солнечный фильтр.

LEVENHUK Skyline Travel 80

Компактный и легкий телескоп-рефрактор с осветленной оптикой, который придется по душе, как начинающему астроному-любителю, так и профессионалу. Он мобилен и прост в управлении. Качественная цветопередача порадует любого пользователя. Данное устройство имеет ориентацию на изучение лунной, либо любой другой планетарной поверхности, а также может использоваться для изучения наземного ландшафта. Именно в этот телескоп удастся рассмотреть такие события в бескрайнем космосе, как туманности, млечные пути, галактики и скопления звезд.

Лучшее качество картинки передается за чертой города, где нет городской засветки. К тому же, такой телескоп больше подходит для тех, кто привык разглядывать пейзажи галактики вне стен дома. Легкая конструкция, наличие подставки и вместительной переносной сумки в комплекте (вмещает в себя прибор и всю комплектацию) делает путешествие с ним легче и приятнее.

Со всем комплектом аксессуаров комплексное полезное увеличение составляет 160 крат. Собственно, именно за счет этого предоставляется возможность детального изучения, например, лунных кратеров.

LEVENHUK Skyline Travel 80

  • Легкая и при этом надежная конструкция.
  • Сумка для хранения и переноски устройства в комплекте.
  • Приятный дизайн.
  • Обнаружено не было.

Celestron AstroMaster 90 AZ

Мощный аппарат, которому присущи такие параметры, как: качество сборки, отличная оптическая составляющая, надежность, а также легкость использования. Передает четкие изображения множества объектов бескрайнего космоса, тем самым вовлекая в астрономию с головой.

Телескоп легко собирается без посторонней помощи и инструментов, а также практически лишен необходимости в тех обслуживании.

Оснащен искателями, которые были доработаны и в этой модели значительно упрощают фокусировку на цели, а также быстро и легкосъемными креплениями, по виду напоминающие ласточкин хвост, для фиксирования, полками для дополнительных предметов из набора и легкой складной подставкой-треногой.

Celestron AstroMaster 90 AZ

  • Хорошая, качественная оптика.
  • Соотношение цена – качество.
  • Красивый дизайн.
  • Легкость конструкции.
  • Неудобный искатель.

LEVENHUK Strike 90 PLUS

Отличная модель телескопа для любителя по оптимальному соотношению цена-качество станет надежным помощником в «путешествиях» по бескрайнему космосу. Рефрактор установлен на азимутальном креплении, с помощью которого с легкостью фиксируется на держателе-треноге. На корпусе имеет видоискатель, что упрощает поиск объектов в ночном небе за счет самонаведения по координатам.

В модели установлена фирменная высококачественная оптика от производителя, что позволяет наблюдать за объектами в высочайшем качестве и хорошей степени насыщенности цветов. Большой комплект дополнительных аксессуаров, фирменный чехол и яркая упаковка сделают этот телескоп отличным подарком для начинающих астрономов.

LEVENHUK Strike 90 PLUS

  • Хорошая комплектация.
  • Фирменная качественная оптика.
  • Небольшой вес.
  • Качественная сборка и упаковка.
  • Небольшие ореолы при ярком свете.

BRESSER Galaxia 114/900 EQ

Отличный телескоп с превосходными свойствами оптики, посредством него вы сможете детально рассмотреть кратеры на Луне, увидеть знаменитые кольца Сатурна, разглядеть полюса Юпитера и даже его галилеевые спутники. Укомплектован адаптером, при помощи которого вы можете подсоединить к нему свой мобильный телефон и открыть для себя новое направление в фотографии, при этом дополнительное оборудование абсолютно не понадобится, только камера вашего мобильного устройства.

Мощность оптики дозволяет достичь увеличения в 675 крат. Превосходные изображения передаются, всё-таки, при рассмотрении крупных объектов, таких как планеты в солнечной системе. Телескоп укомплектован двумя окулярами и трехкратной линзой Барлоу – этого вполне достаточно для начиющих пользователей.

Видоискатель и экваториальная монтировка упростят поиск объектов на ночном небосводе и слежение за ними.

BRESSER Galaxia 114/900 EQ

  • Превосходное качество сборки.
  • Крепкая монтировка и подставка.
  • Точный видоискатель по GPS.
  • Высокая стоимость.

Sky-Watcher Dob 8″ (200/1200) Retractable

Зеркалка, она же рефлекторная оптика Ньютона, изготовлена специально для изучения бескрайнего и глубочайшего космоса. Эта модификация послужит идеально для наблюдений вне черты города. Отличное качество зрительной составляющей организовывает первоклассную свето- и цветопередачу, формируя красочную насыщенную картину.

Телескоп имеет складную конструкцию, благодаря чему его легко и удобно перевозить. Сама система максимально адаптирована под перенос, состоит из двух частей, которые выдвигаются и их можно сдвинуть. В повторной отладке настроек после таких манипуляций нет необходимости. Имеет систему самонаведения и фиксируется на азимутальную установку Добсона.

Sky-Watcher Dob 8

  • Фокусное расстояние.
  • Складная конструкция.
  • Мобильность.
  • Большие габариты.

Сравнительная таблица

Ниже приведена таблица, в которой отражены основные свойства перечисленных выше модификаций телескопов для начинающих в астрономии и просто любителей.

Модель Диаметр объектива, мм Фокусное расстояние объектива, мм Полезное увеличение Комплектация Вес, кг Средняя цена, руб
Veber УМКА 76/300 76 300 152х
  • Окуляр на 8 мм (увеличение в 37,5 крат) 1.25″;
  • Окуляр на 20 мм (увеличение в 15 крат) 1.25″;
  • Линза Барлоу 2х 1.25″;
  • Фильтр для рассмотрения Луны 1.25″;
  • Видоискатель 5×24 с крепежом.
2 3540
Sky-Watcher BK 705AZ2 70 500 140х
  • Труба 140х70;
  • Окуляры 10 и 25 мм;
  • Диагональное зеркало 90;
  • Оптический видоискатель 6×24;
  • Азимутальная монтировка AZ2;
  • Подставка-тренога.
5.9 8900
LEVENHUK Skyline Travel 80 80 400 160х
  • Труба;
  • Монтировка;
  • Оптический искатель;
  • Окуляры K на 9 мм и 15 мм;
  • Диагональное зеркало;
  • Линза Барлоу;
  • Подставка;
  • Чехол для хранения.
3.8 12600
Celestron AstroMaster 90 AZ 90 1000 213х
  • Окуляр 1: 20 мм (увеличение 50х);
  • Окуляр 2: 10 мм (увеличение 100х);
  • Оборачивающая призма 90°.
8.42 15990
LEVENHUK Strike 90 PLUS 90 600 165х
  • Окуляр H-20 мм;
  • Окуляр F6 мм;
  • Зум-окуляр 6.8 – 16 мм,
  • Компас;
  • Сумка;
  • Линза Барлоу 3х.
9 19390
BRESSER Galaxia 114/900 EQ 114 900 225х
  • Окуляр K 4, 9, 25 мм;
  • Диагональное зеркало;
  • Линза Барлоу 3x;
  • Лунный фильтр.
14.85 22785
Sky-Watcher Dob 8″ (200/1200) Retractable 203 1200 406х
  • Труба 460×203;
  • Монтировка Добсона;
  • Адаптер 1.25″ приделанный к пластине Т2;
  • Адаптер для окуляра 2″;
  • Окуляры Super на 10 и на 25 миллиметров, 1.25″;
  • Оптический видоискатель 8×50 с колечком на кронштейне.
26.7 37490

Как выбрать?

Основные критерии при выборе телескопа для начинающих следующие:

  1. Оптика. Телескопы бывают рефлекторными (зеркалки), рефракторными (линзы) и смешанные, то есть рефлекторно-рефракторные или зеркально-линзовые.
  2. Апертура или диаметр объектива. От диаметра объектива зависит светосила, цветопередача и разрешение, что способствует тому, что вы сможете разглядеть более далекие и тусклые объекты. Но с другой стороны, таковые параметры сильно влияют на размеры и вес устройства.
  3. Фокусное расстояние. Этот параметр отвечает за то, насколько далеко аппарат может поймать предмет в фокус. Чем больше фокусное расстояние, тем меньше проявление светосилы и уменьшено поле зрения. Такой вариант подойдет для детального рассмотрения далеких объектов. Короткий фокус говорит и малой кратности, но при этом большой светосиле и поле зрения. Такой вариант подойдет для наблюдения за протяженными объектами, такими как млечный путь, галактика.

Способ крепления телескопа к подставке-треноге.

  • Азимутальная – без усилий способна осуществлять вращения во всех плоскостях как штатив для фотоаппарата.
  • Экваториальная – настраивается исключительно на полюс мира и способствует нахождению объектов в их часовых поясах (при условии, что мы их знаем).
  • Установка Добсона – то же самое, что и первый тип, но предназначается для установки более габаритных моделей.
  • Автоматизированная – полностью автоматическая установка с самонаведением по GPS и управлением через ПК.

Более подробно обо всех нюансах выбора телескопа смотрите на видео:

5 лучших телескопов для наблюдения за небом

Звездное небо никогда не перестанет удивлять поклонников своей загадочностью, ни с чем не сравнимой красотой и конечно, многочисленными теориями и предположениями.

Астрономия — увлечение для интеллектуальных и пытливых, и благодаря современным мощным телескопам каждый может удовлетворить свое любопытство и внимательно рассмотреть все небесные тела.

Мы решили собрать все полезные советы, которые могут пригодиться начинающим и более опытным астрономам, а так же подобрали 5 качественных телескопов.

Как правильно смотреть на звезды?

Прежде чем браться за телескоп, нужно разобраться, с чем мы имеем дело. Когда, где и как лучше всего наблюдать за небесными телами.

Наблюдать за звездным небом можно и нужно в любое время года. В разные сезоны над различными регионами лучше всего видны различные созвездия.

Если вы путешествуете и бываете в различных уголках планеты, обязательно воспользуйтесь случаем и посмотрите на небо в Южном полушарии — именно в нем лучше виден млечный путь. Кроме того, там расположены совершенно другие созвездия. Профессионалы охотятся за звездами и на экваторе, и ближе к полюсам Земли.

В России лучшие места для наблюдения — это Байкал, Алтайские горы, и Южные города.

Наиболее удобным временем для наблюдения считаются конец лета и начало осени, поскольку в это время достаточно темно, и достаточно тепло, чтобы с удовольствием наслаждаться звездными ночами. Зимой же имеется другое преимущество — ночи длиннее, а следовательно, у вас будет больше времени на просмотр.

Для того, чтобы не запутаться и увидеть именно то, что вас интересует, можно использовать специальные приложения, которые показывают расположение звезд на небе.

Разумеется, наблюдать необходимо в темное время суток. Смотреть на солнце без необходимого оборудования нельзя ни в коем случае, это очень опасно и может привести к потере зрения.

Чтобы как можно лучше рассмотреть звезды, нужно учесть несколько аспектов. Первый, это, конечно, погода — для наблюдения за звездами необходимо безоблачное или малооблачное ночное небо. Если небо затянуто тучами, шанс увидеть что-либо стремится к нулю. Продвинутые астрономы даже порекомендуют выбирать не слишком влажную и не слишком пыльную погоду, поскольку частицы пыли и влаги имеют свойство поглощать свет.

Второй аспект — это место наблюдения. Разумеется, бывалые астрономы посоветуют выбраться за город и чем дальше от населенных пунктов — тем лучше. Как правило, достаточно будет отъехать на 70-100км, чтобы спокойно рассматривать звездное небо.

За городом нет такого светового загрязнения, как в городе, а следовательно, лишние источники освещения не будут бликовать, а видимость станет значительно лучше. Лучше всего наблюдать небо с более высоких точек. Именно по этой причине обсерватории всегда располагаются на возвышениях. Идеальное место для наблюдения — это, конечно, горы. Но подойдут и возвышенности, и холмы.

Самые яркие звезды и планеты можно рассмотреть и из города, в таком случае важнее всего именно погода.

И конечно, очень важен качественный телескоп.

Мы подобрали пять лучших телескопов: для детей, начинающих астрономов, любителей, опытных пользователей и профессионалов, с помощью которых очень легко и приятно наблюдать за звездным небом.

Лучшие телескопы

Для детей: Levenhuk Strike 60 NG

Цена: 9 108 рублей

Телескоп от Levenhuk может стать идеальным учебным пособием для ребенка, который увлекается астрономией. Помимо непосредственно телескопа и окуляров, в комплект включено подробное руководство. Из него ребенок сможет узнать о 280 самых увлекательных и интересных небесных объектах. Кроме того, вместе с телескопом вы получите яркие постеры с изображением звезд и планет, по которым невероятно легко обучаться, и диск с виртуальным планетарием.

Levenhuk Strike 60 NG очень легок и прост в обращении, поскольку он рассчитан специально на начинающих астрономов. Штатив регулируется, что позволяет расположить телескоп на комфортной для ребенка высоте. Levenhuk Strike 60 NG не требует предварительной настройки, пользоваться им можно сразу после распаковки. Высококачественные линзы со специальным просветляющим покрытием позволяют получить яркое и контрастное изображение. Благодаря искателю, который так же входит в комплект, ребенок справится с поиском объектов на небе. Телескоп можно использовать как в домашних условиях, так и на улице или за городом.

Для начинающих: Celestron AstroMaster 90 EQ

Цена — 17 680 рублей

Этот рефракторный телескоп подходит как для взрослых, так и для детей. С ним можно наблюдать и за земными объектами, и за звездами. Серия телескопов Astro Master удачно совмещает качество и набор необходимых аксессуаров.

Все оптические элементы данного телескопа выполнены из стекла и оснащены специальными покрытиями. Он позволяет не только рассмотреть самые яркие космические объекты, но и удаленные. Celestron AstroMaster 90 EQ дает возможность рассмотреть предметы в 13 раз меньше, чем те, что можно увидеть невооруженным глазом. Диаметр объектива телескопа составляет 90мм, а фокусное расстояние — 1000мм.

В комплект телескопа Celestron AstroMaster 90 EQ В комплект входит 2 окуляра, дающие увеличение 50 и 100 крат. Встроенный искатель StarPointer поможет определить объекты. Для удобной установки телескоп так же обеспечен штативом с полочкой под аксессуары.

Ну а специально для начинающих звездочетов в комплект включена программа-планетарий TheSky X, база данных которой позволяет получить доступ к более чем 10 000 объектов. Кроме того, она дает возможность печатать звездные карты.

Этот телескоп отлично подойдет для обучения и первых шагов в астрономии, и не устареет при дальнейшем изучении космоса.

Для любителей: Bresser Messier NT-130/1000 (EXOS-1)

Цена — 68 400 рублей

Bresser Messier NT-130/1000 отличный телескоп для любителей наблюдения за небесными телами. 130мм — это апертура телескопа, а 1000 — минимальное фокусное расстояние.

Этот девайс оснащен широкоугольным окуляром Plössl 26мм, который обеспечивает 36-кратное увеличение и позволяет рассматривать поверхность Луны, и объекты глубокого космоса. Линзы из качественного стекла с многослойным покрытием заботятся о том, чтобы изображение было четким и контрастным.

Подойдет Bresser Messier NT-130/1000 и для астрофотографии — к нему можно прикрепить зеркальную камеру и наслаждаться съемками.

Не стоит ошибаться, этот телескоп может подойти и новичкам, однако его нельзя назвать бюджетным, а спецификации, рассчитаны на тех, кто планирует долгосрочное наблюдение за звездами.

Штатив телескопа выполнен из нержавеющей стали, поэтому он идеально подойдет для наружного наблюдения. Кроме того, он очень устойчив и подавляет вибрации, что делает его невероятно удобным, а процесс наблюдения — довольно простым.

Bresser Messier NT-130/1000 — это великолепный выбор любителя астрономии.

Для опытных пользователей: Levenhuk Strike 1000 PRO

Цена — 50 310 рублей

Для тех, кто уже давно увлечен космосом, и предпочитает более продвинутую технику, отличным выбором станет Levenhuk Strike 1000 PRO. С этим телескопом можно наблюдать и за планетами, и за объектами глубокого космоса, находящимися за пределами Солнечной Системы. Фокусное расстояние этого телескопа составляет 1300мм, так что вы сможете детально рассмотреть поверхность Луны, увидеть звездные скопления и туманности.

Яркость и контрастность изображения обеспечивает объектив, апертура которого составляет 102мм. Кроме того, на телескоп можно установить зеркальную камеру и делать снимки космических объектов.

В комплект, помимо стандартного набора материалов, входит 2-х кратная линза Барлоу, окуляр Plössl 6.3мм, набор фильтров — цветные, солнечный и лунный, и чехол для телескопа.

Благодаря своей зеркально-линзовой конструкции, телескоп обеспечивает великолепное качество изображения. А с прочным и устойчивым штативом, вы можете использовать Levenhuk Strike 1000 PRO на природе даже на неровной поверхности.

Для профессионалов: Meade 8″ LX90-ACF

Цена: 219 900

Телескоп высочайшего класса рассчитан на настоящих фанатов астрономии. Если вы давно любите космос, и насмотрелись на звезды через другие телескопы — это находка именно для вас! С Meade 8″ LX90-ACF вы можете организовать настоящую домашнюю (или выездную) обсерваторию.

Оптическая схема этого телескопа выделяется среди аналогов — это модифицированная схема Шмидта-Кассегрена с исправленной коматической аберрацией. Иными словами, телескоп основан на самой совершенной на сегодняшний день оптической схеме.

Световой диаметр этого телескопа позволит без труда вести наблюдения за объектами глубокого космоса.

Отдельное преимущество, которое порадует пользователя — это возможность сразу после распаковки приступить к наблюдениям — телескоп не требует сборки и дополнительной установки или настройки.

Meade 8″ LX90-ACF собран из качественных деталей, что уж говорить о том, какое высококлассное изображение вам удастся получить от этого телескопа!

Что ж, теперь вы можете подойти к вопросу со знанием дела, вооружиться подходящим для ваших целей телескопом и отправляться вперед, к неизведанным созвездиям!

Рефракторы (линзовые телескопы)

Исторически первыми появились линзовые телескопы. Свет в таком телескопе собирается с помощью двояковыпуклой линзы, которая и является объективом телескопа. Ее действие основано на свойстве выпуклых линз преломлять световые лучи и собирать в определенной точке – фокусе. Поэтому часто линзовые телескопы называют рефракторами (от лат. refract — преломлять).

В рефракторе Галилея (созданном в 1609 г.) для того, чтобы собрать максимум звездного света и позволить человеческому глазу его увидеть, использовались две линзы. Первая линза (объектив) – выпуклая, она собирает свет и фокусирует его на определенном расстоянии, а вторая линза (играющая роль окуляра) – вогнутая, превращает сходящийся пучок световых лучей обратно в параллельный. Система Галилея дает прямое, неперевернутое изображение, однако сильно страдает от хроматической аберрации, портящей изображение. Хроматическая аберрация проявляется в виде ложной окраски границ и деталей объекта.

Более совершенным был рефрактор Кеплера (1611 г.), в котором в качестве окуляра выступала выпуклая линза, передний фокус которой совмещался с задним фокусом линзы-объектива. Изображение при этом получается перевернутым, но это несущественно для астрономических наблюдений, зато в точке фокуса внутри трубы можно поместить измерительную сетку. Предложенная Кеплером схема оказала сильное влияние на развитие рефракторов. Правда, она также не была свободна от хроматической аберрации, но ее влияние можно было уменьшить, увеличив фокусное расстояние объектива. Поэтому рефракторы того времени при скромных диаметрах объективов нередко имели фокусное расстояние в несколько метров и соответствующую длину трубы или обходились вообще без нее (наблюдатель держал окуляр в руках и «ловил» изображение, которое строил закрепленный на специальном штативе объектив).

Эти трудности рефракторов в свое время даже великого Ньютона привели к выводу о невозможности исправить хроматизм рефракторов. Но в первой половине XVIII в. появился ахроматический рефрактор.

Среди любительских инструментов наиболее распространены двухлинзовые рефракторы-ахроматы, но существуют и более сложные линзовые системы. Обычно объектив ахроматического рефрактора состоит из двух линз из разных сортов стекла, при этом одна собирающая, а вторая – рассеивающая, и это позволяет значительно уменьшить сферическую и хроматическую аберрации (присущие одиночной линзе искажения изображения). При этом труба телескопа остается сравнительно небольшой.

Дальнейшее совершенствование рефракторов привело к созданию апохроматов. В них влияние хроматической аберрации на изображение сведено к практически незаметной величине. Правда, достигается это за счет применения специальных типов стекол, которые дороги в производстве и обработке, поэтому и цена на такие рефракторы в несколько раз выше, чем на ахроматы одинаковой апертуры.

Как и у любой другой оптической системы, у рефракторов есть свои плюсы и минусы.

Достоинства рефракторов:

  • сравнительная простота конструкции, дающая простоту в использовании и надежность;
  • практически не требуется специальное обслуживание;
  • быстрая термостабилизация;
  • отлично подходит для наблюдений Луны, планет, двойных звезд, особенно при больших апертурах;
  • отсутствие центрального экранирования от вторичного или диагонального зеркала обеспечивает максимальный контраст изображения;
  • хорошая цветопередача в ахроматическом исполнении и отличная в апохроматическом;
  • закрытая труба исключает воздушные потоки, портящие изображение, и защищает оптику от пыли и загрязнений;
  • объектив изготавливается и юстируется производителем как единое целое и не требует регулировок пользователем.

Недостатки рефракторов:

  • наибольшая стоимость на единицу диаметра объектива в сравнении с рефлекторами или катадиоптриками;
  • как правило, больший вес и габариты в сравнении с рефлекторами или катадиоптриками одинаковой апертуры;
  • цена и громоздкость ограничивают наибольший практический диаметр апертуры;
  • как правило, менее подходят для наблюдений небольших и тусклых объектов далекого космоса из-за практических ограничений на апертуру.

Мы рекомендуем:

Телескоп Bresser Mars Explorer 700/70 NG
Bresser Mars Explorer 70/700 – классический небольшой ахромат. Высококачественная оптика этой модели позволяет получать яркое и четкое изображение объекта, а входящие в комплект окуляры позволят установить увеличение вплоть до 260 крат. Эта модель телескопа с успехом используется для съемки поверхности Луны и дисков планет.

Телескоп с автонаведением Bresser Messier AR-152S 152/760 (Advanced GOTO mount)
4-х линзовый рефрактор-ахромат (Пецваль). С сравнении с ахроматом имеет меньший хроматизм и большее полезное поле зрения. Система автонаведения. Подходит для астрофотографии. Сочетание короткого фокуса и большой апертуры делает телескоп с автонаведением Bresser Messier AR-152S одной из самых привлекательных моделей для наблюдения за крупными небесными объектами. Туманности, удаленные галактики предстанут пред вами во всей красе, а используя дополнительные фильтры, вы сможете изучать их в деталях. Мы рекомендуем использовать данный телескоп для лунных и планетарных наблюдений, изучения объектов глубокого космоса, астрофотографии.

Телескоп Levenhuk Astro A101 (в кейсе)
Всем, кто желает постичь азы астрономии и наблюдений звезд и планет, мы рекомендуем телескоп-рефрактор Levenhuk Astro A101 60×700. Также этот телескоп удовлетворит более высокие запросы опытного наблюдателя, поскольку эта модель дает очень высокое качество изображения.

Телескоп Levenhuk Skyline 80х400 AZ
Для многих увлеченных астрономией людей крайне важно использовать каждую свободную минуту для интереснейших исследований. Однако, к сожалению, не всегда под рукой есть телескоп – многие из них столь тяжелы и громоздки, что носить их постоянно с собой не представляется возможным. С телескопом-рефрактором
Levenhuk Skyline 80х400 AZ Ваши представления об астрономических наблюдениях изменятся: теперь Вы сможете перевозить телескоп с собой в машине, в самолете, в поезде, то есть, куда бы Вы ни поехали, Вы везде сможете уделять время своему хобби.

Телескоп Orion GoScope 70 Backpack
Телескоп-рефрактор Orion GoScope 70 – портативный ахромат, который позволит изучать удаленные небесные тела с высокой четкостью. По сути, этот телескоп уже полностью собран и готов к работе, и помещен в специальный удобный рюкзак. Вам нужно только раздвинуть алюминиевую треногу и установить на нее телескоп.


Рефлекторы (зеркальные телескопы)

Зеркальный телескоп или рефлектор (от лат. reflectio — отражать) – это телескоп, объектив которого состоит только из зеркал. Также как и выпуклая линза, вогнутое зеркало способно собирать свет в некоторой точке. Если поместить в этой точке окуляр, то можно будет увидеть изображение.

Одним из первых рефлекторов был рефлекторный телескоп Грегори (1663), который придумал телескоп с параболическим главным зеркалом. Изображение, которое можно наблюдать в подобный телескоп, оказывается свободным и от сферических, и от хроматических аберраций. Собранный большим главным зеркалом свет, отражается от небольшого эллиптического зеркала, закрепленного перед главным, и выводится к наблюдателю через отверстие в центре главного зеркала.

Разочаровавшись в современных ему рефракторах, И. Ньютон в 1667 г. начал разработку телескопа-рефлектора. Ньютон использовал металлическое главное зеркало (стеклянные зеркала с серебряным или алюминиевым покрытием появились позже) для собирания света, и небольшое плоское зеркальце для отклонения собранного светового пучка под прямым углом и вывода его сбоку трубы в окуляр. Таким образом, удалось справиться с хроматической аберрацией – вместо линз в этом телескопе используются зеркала, которые одинаково отражают свет с разными длинами волн. Главное зеркало рефлектора Ньютона может быть параболическим или даже сферическим, если его относительное отверстие сравнительно невелико. Сферическое зеркало гораздо проще изготовить, поэтому рефлектор Ньютона со сферическим зеркалом – это один из самых доступных типов телескопов, в том числе и для самостоятельного изготовления.

Схема, предложенная в 1672 г. Лореном Кассегреном, внешне напоминает рефлектор Грегори, однако имеет ряд существенных отличий – гиперболическое выпуклое вторичное зеркало и, как следствие, более компактный размер и меньшее центральное экранирование. Традиционный рефлектор Кассегрена нетехнологичен в массовом производстве (сложные поверхности зеркал – парабола, гипербола), а также имеет недоисправленную аберрацию комы, однако его модификации остаются популярными и в наше время. В частности, в телескопе Ричи-Кретьена применены гиперболические главное и вторичное зеркала, что дает ему возможность развивать большие поля зрения, свободные от искажений, и, что особенно ценно — для астрофотографии (прославленный орбитальный телескоп им. Хаббла спроектирон по этой схеме). Кроме того, на основе кассегреновского рефлектора позднее были разработаны популярные и технологичные катадиоптрические системы – Шмидта-Кассегрена и Максутова-Кассегрена.

В наше время рефлектором чаще всего называется именно телескоп, сделанный по схеме Ньютона. Имея малую сферическую аберрацию и полное отсутствие хроматизма, он, тем не менее, не полностью свободен от аберраций. Уже недалеко от оси начинает проявляться кома (неизопланатизм) – аберрация, связанная с неравностью увеличения разных кольцевых зон апертуры. Кома приводит к тому, что изображение звезды выглядит не как кружок, а как проекция конуса – острой и яркой частью к центру поля зрения, тупой и округлой в сторону от центра. Кома прямо пропорциональна удалению от центра поля зрения и квадрату диаметра объектива, поэтому особенно сильно она проявляется в так называемых «быстрых» (светосильных) Ньютонах на краю поля зрения. Для коррекции комы применяются специальные линзовые корректоры, устанавливаемые перед окуляром или фотокамерой.

Как наиболее доступный для самостоятельного изготовления рефлектор, «ньютон» часто выполняется на простой, компактной и практичной монтировке Добсона и в таком виде является наиболее портативным телескопом с учетом доступной апертуры. Причем производством «добсонов» занимаются не только любители, но и коммерческие производители, и телескопы могут иметь апертуры до полуметра и более.

Достоинства рефлекторов:

  • наименьшая стоимость на единицу диаметра апертуры в сравнении с рефракторами и катадиоптриками – большие зеркала проще производить, чем большие линзы;
  • сравнительно компактны и транспортабельны (особенно в добсоновском исполнении);
  • в силу сравнительно большой апертуры превосходно работают для наблюдений тусклых объектов далекого космоса – галактик, туманностей, звездных скоплений;
  • дают яркие изображения с малыми искажениями, отсутствует хроматическая аберрация.

Недостатки рефлекторов:

  • центральное экранирование и растяжки вторичного зеркала снижают контраст деталей изображения;
  • массивное стеклянное зеркало требует времени на термостабилизацию;
  • открытая труба не защищена от пыли и тепловых токов воздуха, портящих изображение;
  • требуется периодическая подстройка положений зеркал (юстировка или коллимация), склонная утрачиваться при транспортировке и эксплуатации.

Телескоп Bresser Venus 76/700 (LED-искатель)
Вы хотите приступить к астрономическим наблюдениям впервые? А может быть, у Вас уже есть богатый опыт таких исследований? В обоих случаях Вашим надежным помощником станет рефлектор Ньютона Bresser Venus 76/700 – телескоп, благодаря которому Вы всегда будете легко и без особых усилий получать изображения высокого качества и четкости. Вы в подробностях рассмотрите не только поверхность Луны, включая многие кратеры, увидите не только большие планеты Солнечной системы, но и некоторые далекие туманности, как, например, туманность в Орионе.

Телескоп Bresser Pollux 150/1400 EQ2
Телескоп Bresser Pollux 150/1400 EQ2 создан по схеме Ньютона. Это позволяет при сохранении высоких оптических характеристик (фокусное расстояние достигает 1400 мм) значительно уменьшить габаритные размера телескопа. Благодаря апертуре в 150 мм телескоп способен собирать большое количество света, что позволяет наблюдать достаточно слабые объекты. С Bresser Pollux Вы сможете наблюдать планеты Солнечной системы, туманности и звезды до 12.5 зв. вел., в том числе двойные. Максимально полезное увеличение составляет 300 крат.

Телескоп Levenhuk Skyline 130х900 EQ
Если Вас манят своей неизведанностью объекты, расположенные в глубинах космического пространства, то Вам, без сомнения, нужен телескоп, способный приблизить эти загадочные объекты и позволить подробно изучить их. Мы говорим о Levenhuk Skyline 130х900 EQ – телескопе-рефлекторе Ньютона, созданном как раз для исследования глубокого космоса.

Телескоп с автонаведением Levenhuk SkyMatic 135 GTA
Рефлектор Levenhuk SkyMatic 135 GTA – прекрасный телескоп для астрономов-любителей, которым требуется система автоматического наведения. Азимутальная монтировка, система автонаведения и большая светосила телескопа позволяют наблюдать Луну, планеты, а также большинство крупных объектов из каталога NGC и Месcье.

Телескоп Orion SpaceProbe 130ST EQ
Телескоп SpaceProbe 130ST EQ можно назвать является короткофокусным вариантом модели SpaceProbe 130. Это тоже надежный и качественный рефлектор, установленный на экваториальную монтировку. Разница заключается в том, что благодаря более высокой светосиле 130ST EQ объекты далекого космоса станут более доступны. Также телескоп имеет более короткую трубу – всего лишь 61см, в то время как модель 130 EQ имеет 83см трубу.


Катадиоптрические (зеркально-линзовые) телескопы

Зеркально-линзовые (или катадиоптрические) телескопы используют как линзы, так и зеркала для построения изображения и исправления аберраций. Среди катадиоптриков у любителей астрономии наиболее популярны два типа телескопов, основанных на кассегреновской схеме – Шмидт-Кассегрен и Максутов-Кассегрен.

В телескопах Шмидта-Кассегрена (Ш-К) главное и вторичное зеркала – сферические. Сферическая аберрация исправляется стоящей на входе в трубу полноапертурной коррекционной пластиной Шмидта. Эта пластина со стороны кажется плоской, но имеет сложную поверхность, изготовление которой и составляет главную трудность изготовления системы. Впрочем, американские компании Meade и Celestron успешно освоили производство системы Ш-К. Среди остаточных аберраций этой системы заметнее всего проявляются кривизна поля и кома, исправление которых требует применения линзовых корректоров, особенно при фотографировании. Главное достоинство – короткая труба и меньший вес, чем у ньютоновского рефлектора той же апертуры и фокусного расстояния. При этом отсутствуют растяжки крепления вторичного зеркала, а закрытая труба препятствует образованию воздушных потоков и защищает оптику от пыли.

Система Максутова-Кассегрена (М-К) была разработана советским оптиком Д. Максутовым и подобно Ш-К имеет сферические зеркала, а исправлением аберраций занимается полноапертурный линзовый корректор – мениск (выпукло-вогнутая линза). Поэтому такие телескопы еще называются менисковыми рефлекторами. Закрытая труба и отсутствие растяжек – также плюсы М-К. Подбором параметров системы можно скорректировать практически все аберрации. Исключение составляет так называемая сферическая аберрация высших порядков, но ее влияние невелико. Поэтому эта схема очень популярна и выпускается многими производителями. Вторичное зеркало может быть реализовано как отдельный блок, механически закрепленный на мениске, либо как алюминированный центральный участок задней поверхности мениска. В первом случае обеспечивается лучшее исправление аберраций, во втором – меньшая стоимость и вес, большая технологичность в массовом производстве и исключение возможности разъюстировки вторичного зеркала.

В целом, при одинаковом качестве изготовления система М-К способна дать немного более качественное изображение, чем Ш-К с близкими параметрами. Но большие телескопы М-К требуют больше времени на термостабилизацию, т.к. толстый мениск остывает значительно дольше пластины Шмидта, а также для М-К возрастают требования к жесткости крепления корректора, и весь телескоп получается тяжелее. Поэтому прослеживается применение для малых и средних апертур системы М-К, а для средних и больших – Ш-К.

Существуют также катадиоптрические системы Шмидта-Ньютона и Максутова-Ньютона, имеющие характерные черты упомянутых в названии конструкций и лучшее исправление аберраций. Но при этом габариты трубы остаются «ньютоновскими» (сравнительно крупными), а вес увеличивается, особенно в случае менискового корректора. Кроме того, к катадиоптрическим относятся системы с линзовыми корректорами, установленными перед вторичным зеркалом (система Клевцова, «сферические кассегрены» и т.п.).

Достоинства катадиоптрических телескопов:

  • высокий уровень коррекции аберраций;
  • универсальность – хорошо подходят и для наблюдений планет и Луны, и для объектов далекого космоса;
  • там, где есть закрытая труба, она минимизирует тепловые потоки воздуха и защищает от пыли;
  • наибольшая компактность при равной апертуре в сравнении с рефракторами и рефлекторами;
  • большие апертуры стоят значительно дешевле сравнимых рефракторов.

Недостатки катадиоптрических телескопов:

  • необходимости сравнительно долгой термостабилизации, особенно для систем с менисковым корректором;
  • большей стоимости, чем у рефлекторов равной апертуры;
  • сложности конструкции, затрудняющей самостоятельную юстировку инструмента.

Телескоп с автонаведением Levenhuk SkyMatic 105 GT MAK
Levenhuk SkyMatic 105 GT MAK — отличный телескоп с автонаведением, обладающий небольшими размерами и весом, но при этом имеющий высокое разрешение и дающий изображение высокого качества. Компактность конструкции достигнута благодаря использованию схемы Максутова-Кассегрена. Телескоп Levenhuk SkyMatic 105 GT MAK достаточно мощен для наблюдений деталей на дисках Луны и планет, а также способен показать компактные шаровые скопления и планетарные туманности.

Телескоп Orion StarMax 102mm EQ Compact Mak
Каждый астроном, будь то новичок или более опытный любитель, знает, какой азарт охватывает его при наблюдениях, как хочется полностью погрузиться в сказочный сюрреалистичный мир звезд, планет, комет, астероидов и других небесных тел, столь же загадочных, сколь и прекрасных. Но порой удовольствие от наблюдений бывает серьезно подпорчено, в частности, если телескоп «попался» тяжелый и громоздкий. Львиную долю времени в таком случае занимает переноска, сборка и настройка. Максутов-Кассегрен Orion StarMax 102mm EQ Compact Mak – один их самых компактных телескопов с 102 мм объективом, и он не позволит Вам тратить драгоценное наблюдательное время на что-то другое.

Телескоп Vixen VMC110L Sphinx SXD (Starbook-s)
Телескоп Vixen VMC110L на монтировке Sphinx SXD — хороший выбор для астрофотографии. Оптика телескопа сочетает в себе компактность системы Кассегрена c большим фокусным расстоянием. Для исправления аберраций используется линзовый корректор, расположенный перед вторичным зеркалом. В дополнение стоит отметить надежную и жесткую монтировку с компьютерным наведением Sphinx SXD. Помимо настоящего компьютерного планетария в пульте управления с большим цветным экраном, она имеет функцию коррекции периодической ошибки, полярный искатель — основное, что необходимо для максимально точного наведения телескопа на объект фотографирования.


Первый изобретатель

Телескопические устройства появились в семнадцатом веке. Однако по сей день ведутся дебаты, кто изобрел телескоп первым – Галилей или Липперсхей. Эти споры связаны с тем, что оба ученых примерно в одно время вели разработки оптических устройств.

В 1608 году Липперсхей разработал очки для знати, позволяющие видеть удаленные объекты вблизи. В это время велись военные переговоры. Армия быстро оценила пользу разработки и предложила Липперсхею не закреплять авторские права за устройством, а доработать его так, чтобы в него можно было бы смотреть двумя глазами. Ученый согласился.

Новую разработку ученого не удалось удержать втайне: сведения о ней были опубликованы в местных печатных изданиях. Журналисты того времени назвали прибор зрительной трубой. В ней использовалось две линзы, которые позволяли увеличить предметы и объекты. С 1609 года в Париже вовсю продавали трубы с трехкратным увеличением. С этого года какая-либо информация о Липперсхее исчезает из истории, а появляются сведения о другом ученом и его новых открытиях.

Телескопы без глаз

А что такое телескоп без глаза, для чего его используют? Как известно, у каждого человека глаза воспринимают изображение по-разному. Один глаз может видеть больше, а другой – меньше. Чтобы ученые смогли рассмотреть все, что им необходимо увидеть, применяют телескопы без глаз. Эти аппараты передают картинку на экраны мониторов, через которые каждый видит изображение именно таким, какое оно есть, без искажений. Для малых телескопов с этой целью разработаны камеры, подключаемые к аппаратам и снимающие небо.

Самыми современными методами видения космоса стало использование ПЗС камер. Это особые светочувствительные микросхемы, которые собирают информацию с телескопа и передают ее на ЭВМ. Получаемые с них данные настолько четкие, что невозможно представить, какими еще устройствами можно было бы получить такие сведения. Ведь глаз людей не может различать все оттенки с такой высокой четкостью, как это делают современные камеры.

Для измерения расстояний между звездами и другими объектами пользуются специальными приборами – спектрографами. Их подключают к телескопам.

Современный астрономический телескоп – это не одно устройство, а сразу несколько. Получаемые данные с нескольких аппаратов обрабатываются и выводятся на мониторы в виде изображений. Причем после обработки ученые получают изображения очень высокой четкости. Увидеть глазами в телескоп такие же четкие изображения космоса невозможно.

Ультрафиолетовые телескопы

При фотографировании фотопленка может засвечиваться ультрафиолетовыми лучами. В некоторой части ультрафиолетового диапазона возможно принимать изображения без обработки и засвечивания. А в некоторых случаях необходимо, чтобы лучи света прошли через специальную конструкцию – фильтр. Их использование помогает выделить излучение определенных участков.

Существуют и другие виды телескопов, каждый из которых имеет свое назначение и особые характеристики. Это такие модели, как рентгеновские, гамма-телескопы. По своему назначению все существующие модели можно разделить на любительские и профессиональные. И это далеко не вся классификация аппаратов для отслеживания небесных тел.

Телескопы — типы и устройство.

Основное назначение телескопов — собрать как можно больше излучения от небесного тела. Это позволяет видеть неяркие объекты. Во вторую очередь телескопы служат для рассматривания объектов под большим углом или, как говорят, для увеличения. Разрешение мелких деталей – третье предназначение телескопов. Количество собираемого ими света и доступное разрешение деталей сильно зависит от площади главной детали телескопа — его объектива. Объективы бывают зеркальными и линзовыми.

Линзовые телескопы.

Линзы, так или иначе, всегда используются в телескопе. Но в телескопах-рефракторах линзой является главная деталь телескопа – его объектив. Вспомним, что рефракция – это преломление. Линзовый объектив преломляет лучи света, и собирает их в точке, именуемой фокусом объектива. В этой точке строится изображение объекта изучения. Чтобы его рассмотреть используют вторую линзу – окуляр. Она размещается так, чтобы фокусы окуляра и объектива совпадали. Так как зрение у людей разное, то окуляр делают подвижным, чтобы было возможно добиться четкого изображения. Мы это называем настройкой резкости. Все телескопы обладают неприятными особенностями — аберрациями. Аберрации – это искажения, которые получаются при прохождении света через оптическую систему телескопа. Главные аберрации связаны с неидеальностью объектива. Линзовые телескопы (да и телескопы вообще) грешат несколькими аберрациями. Назовем лишь две из них. Первая связана с тем, что лучи разных длин волн преломляются чуть по-разному. Из-за этого для синих лучей существует один фокус, а для красных – другой, расположенный дальше от объектива. Лучи других длин волн собираются каждый в своем месте между этими двумя фокусами. В результате мы видим окрашенные в радугу изображения объектов. Такая аберрация называется хроматической. Второй сильной аберрацией является аберрация сферическая. Она связана с тем, что объектив, поверхностью которого является часть сферы, на самом деле, не собирает все лучи в одной точке. Лучи идущие на разных расстояниях от центра объектива собираются в разных точках, из-за чего изображение получается нечетким. Этой аберрации не было бы, если бы объектив имел поверхность параболоида, но такую деталь сложно изготовить. Чтобы уменьшить аберрации изготавливают сложные, вовсе не двухлинзовые системы. Дополнительные части вводятся для исправления аберраций объектива. Давно держащий первенство среди линзовых телескопов — телескоп Йеркской обсерватории с объективом 102 сантиметра диаметром.

Зеркальные телескопы.

У простых зеркальных телескопов, телескопов-рефлекторов, объектив — это сферическое зеркало, которое собирает световые лучи и отражает их с помощью дополнительного зеркала в сторону окуляра — линзы, в фокусе которой строится изображение. Рефлекс – это отражение. Зеркальные телескопы не грешат хроматической аберрацией, так как свет в объективе не преломляется. Зато у рефлекторов сильнее выражена сферическая аберрация, которая, кстати говоря, сильно ограничивает поле зрения телескопа. В зеркальных телескопах так же используются сложные конструкции, поверхности зеркал, отличные от сферических и прочее.

Зеркальные телескопы изготавливать легче и дешевле. Именно поэтому их производство в последние десятилетия бурно развивается, в то время как новых крупных линзовых телескопов уже очень давно не делают. Самый большой зеркальный телескоп имеет сложный объектив из нескольких зеркал, эквивалентный целому зеркалу диаметром 11 метров. Самый большой монолитный зеркальный объектив имеет размер чуть больше 8-ми метров. Самым большим оптическим телескопом России является 6-ти метровый зеркальный телескоп БТА (Большой Телескоп Азимутальный). Телескоп долгое время был наикрупнейшим в мире.

Характеристики телескопов.

Увеличение телескопа. Увеличение телескопа равно отношению фокусных расстояний объектива и окуляра. Если, скажем, фокусное расстояние объектива два метра, а окуляра – 5 см, то увеличение такого телескопа будет 40 крат. Если поменять окуляр, можно изменить и увеличение. Так астрономы и поступают, ведь не менять же, в самом деле, огромный объектив?!

Выходной зрачок. Изображение, которое строит для глаза окуляр, может в общем случае быть как больше глазного зрачка, так и меньше. Если изображение больше, то часть света в глаз не попадет, тем самым, телескоп будет использоваться не на все 100%. Это изображение называют выходным зрачком и рассчитывают по формуле: p=D:W, где p – выходной зрачок, D – диаметр объектива, а W – увеличение телескопа с данным окуляром. Если принять размер глазного зрачка равным 5 мм, то легко рассчитать минимальное увеличение, которое разумно использовать с данным объективом телескопа. Получим этот предел для объектива в 15 см: 30 крат.

Разрешение телескопов

В виду того что, свет – это волна, а волнам свойственно не только преломление, но и дифракция, никакой даже самый совершенный телескоп не дает изображение точечной звезды в виде точки. Идеальное изображение звезды выглядит в виде диска с несколькими концентрическими (с общим центром) кольцами, которые называют дифракционными. Размером дифракционного диска и ограничивается разрешение телескопа. Все, что закрывает собою этот диск, в данный телескоп никак не увидишь. Угловой размер дифракционного диска в секундах дуги для данного телескопа определяется из простого соотношения: r=14/D, где диаметр D объектива измеряется в сантиметрах. Упомянутый чуть выше пятнадцатисантиметровый телескоп имеет предельное разрешение чуть меньше секунды. Из формулы следует, что разрешение телескопа всецело зависит от диаметра его объектива. Вот еще одна причина строительства как можно более грандиозных телескопов.

Относительное отверстие. Отношение диаметра объектива к его фокусному расстоянию называется относительным отверстием. Этот параметр определяет светосилу телескопа, т. е., грубо говоря, его способность отображать объекты яркими. Объективы с относительным отверстием 1:2 – 1:6 называют светосильными. Их используют для фотографирования слабых по яркости объектов, таких, как туманности.

Телескоп без глаза.

Одной из самых ненадежных деталей телескопа всегда был глаз наблюдателя. У каждого человека — свой глаз, со своими особенностями. Один глаз видит больше, другой — меньше. Каждый глаз по-разному видит цвета. Глаз человека и его память не способны сохранить всю картину, предлагаемую для созерцания телескопом. Поэтому, как только стало возможным, астрономы стали заменять глаз приборами. Если подсоиденить вместо окуляра фотоаппарат, то изображение, получаемое объективом можно запечатлеть на фотопластине или фотопленке. Фотопластина способна накапливать световое излучение, и в этом ее неоспоримое и важное преимущество перед человеческим глазом. Фотографии с большой выдержкой способны отобразить несравненно больше, чем под силу рассмотреть человеку в тот же самый телескоп. Ну и конечно, фотография останется как документ, к которому неоднократно можно будет в последствии обратиться. Еще более современным средством являются ПЗС — камеры с полярно-зарядовой связью. Это светочувствительные микросхемы, которые подменяют собой фотопластину и передают накапливаемую информацию на ЭВМ, после чего могут делать новый снимок. Спектры звезд и других объектов исследуются с помощью присоединенных к телескопу спектрографов и спектрометров. Ни один глаз не способен так четко различать цвета и измерять расстояния между линиями в спектре, как это с легкостью делают названные приборы, которые еще и сохранят изображение спектра и его характеристики для последующих исследований. Наконец, ни один человек не сможет посмотреть одним глазом в два телескопа одновременно. Современные системы из двух и более телескопов, объединенных одной ЭВМ и разнесенных, порой на расстояния в десятки метров, позволяют добиться потрясающе высоких разрешений. Такие системы называют интерферометрами. Пример системы из 4-х телескопов — VLT. Целых четыре вида телескопов мы объединили в один подраздел неслучайно. Земная атмосфера пропускает соответствующие длины электромагнитных волн неохотно, поэтому телескопы для изучения неба в этих диапазонах стремятся вынести в космос. Именно с развитием космонавтики напрямую связано развитие ультрафиолетовой, рентгеновской, гамма и инфракрасной отраслей астрономии.

Радиотелескопы.

В качестве объектива радиотелескопа чаще всего выступает металлическая чаша параболоидной формы. Собранный ею сигнал принимается антенной, находящейся в фокусе объектива. Антенна связана с ЭВМ, которая обычно и обрабатывает всю информацию, строя изображения в условных цветах. Радиотелескоп, как и радиоприемник, способен одновременно принимать только какую-то длину волны. В книге Б. А. Воронцова-Вельяминова «Очерки о Вселенной» есть очень интересная иллюстрация, напрямую связанная с предметом нашего разговора. В одной обсерватории гостям предлагали подойти к столу и взять с него листок бумаги. Человек брал листок и на обороте читал примерно следующее: «Взяв этот листок бумаги, Вы затратили больше энергии, чем приняли все радиотелескопы мира за все время существования радиоастрономии». Если Вы ознакомились с этим разделом (а следовало бы), то Вы, должно быть, помните, что радиоволны обладают самыми большими длинами волн среди всех видов электромагнитного излучения. Это означает, что соответствующие радиоволнам фотоны переносят совсем немного энергии. Чтобы собрать приемлемое количество информации о светилах в радиолучах, астрономы строят огромные по размерам телескопы. Сотни метров – вот тот не столь уже удивительный рубеж для диаметров объективов, который достигнут современной наукой. К счастью, в мире все взаимосвязано. Строительство гигантских радиотелескопов не сопровождается теми же сложностями в обработке поверхности объектива, которые неизбежны при строительстве оптических телескопов. Допустимые погрешности поверхности пропорциональны длине волны, поэтому, порою, металлические чаши радиотелескопов представляют собой не гладкую поверхность, а попросту решетку, и на качестве приема это никак не сказывается. Большая длина волны также позволяет строить грандиозные системы интерферометров. Порой, в таких проектах участвуют телескопы разных континентов. В проектах есть интерферометры космических масштабов. Если они осуществятся, радиоастрономия достигнет невиданных пределов в разрешении небесных объектов. Кроме сбора излучаемой небесными телами энергии, радиотелескопам доступно «подсвечивание» поверхности тел Солнечной системы радиолучами. Сигнал, посланный, скажем с Земли на Луну, отразится от поверхности нашего спутника и будет принят тем же телескопом, что и посылал сигнал. Этот метод исследований называется радиолокацией. С помощью радиолокации можно многое узнать. Впервые астрономы узнали о том, что Меркурий вращается вокруг своей оси именно таким способом. Расстояние до объектов, скорость их движения и вращения, их рельеф, некоторые данные о химическом составе поверхности – вот те немаловажные сведения, которые по силам выяснить радиолокационными методами. Самый грандиозный пример таких исследований – полное картографирование поверхности Венеры, проведенное АМС «Магеллан» на стыке 80-х и 90-х годов. Как Вы, может быть, знаете, эта планета прячет от человеческого глаза свою поверхность за плотной атмосферой. Радиоволны же беспрепятственно проходят сквозь облака. Теперь мы знаем о рельефе Венеры лучше, чем о рельефе Земли (!), ведь на Земле покрывало океанов мешает проводить изучение большей части твердой поверхности нашей планеты. Увы, скорость распространения радиоволн велика, но не безгранична. К тому же, с удаленностью радиотелескопа от объекта возрастает рассеивание посланного и отраженного сигнала. На дистанции Юпитер-Земля сигнал принять уже сложно. Радиолокация – по астрономическим меркам, оружие ближнего боя.

Инфракрасные телескопы.

Инфракрасные волны – это тепло. Для того, что бы регистрировать тепло очень далеких объектов необходимо отгородить принимающий прибор от излучения всего того тепла, которое порождается близкими предметами, в том числе и самим телескопом. Сегодня приборы для измерения инфракрасных лучей помещают в вакуум и охлаждают жидким гелием. Как же работают эти приборы? Представьте себе тонкий лист фольги, через который пропускают ток. Если будет меняться температура фольги, будет изменяться сопротивление металла и, соответственно, ток через него. Измеряя ток, можно определить степень нагрева фольги. Таков принцип. Только поверхность фольги, на которую сводятся лучи от объекта, делают черной, чтобы она лучше поглощала тепло. Про охлаждение всего прибора мы уже говорили.

Инфракрасные телескопы не обладают способностью оптических воспринимать сразу все длины волн диапазона. Устройство, обычно, делается чувствительным к некоторым узким участкам спектра. В этом инфракрасные телескопы похожи на радиотелескопы, принимающие сигнал только на одной длине волны. Похоже и построение изображения объекта в невидимых глазу лучах в условных цветах. Часто на инфракрасных фотографиях используют оттенки красного цвета для характеристики интенсивности излучения той или иной части изображения. Поэтому, если Вы видите фотографию, на которой в изобилии присутствует красный цвет, знайте: скорее всего, это фотография сделана в тепловых лучах. Один и тот же телескоп вполне может быть как оптическим, так и инфракрасным в разное время. Пример — телескоп имени Хаббла. Во многом, конструкция самих инфракрасных телескопов схожа с конструкцией оптических зеркальных телескопов. Большая часть тепловых лучей поддается отражению обычным телескопическим объективом и фокусированию в одной точке, где и размещается прибор, измеряющий тепло. Также существуют инфракрасные фильтры, пропускающие только тепловые лучи. С такими фильтрами происходит фотографирование.

Ультрафиолетовые телескопы.

Фотографическая пленка, особенно если она специально для этого сделана, способна засвечиваться и ультрафиолетовыми лучами. Поэтому принципиальной проблемы в фотографировании ультрафиолетовых изображений не стоит. Кроме того, в значительной части ультрафиолетового диапазона удается принимать системы с зеркальным объективом и регистрирующим устройством. Ультрафиолетовые телескопы схожи по своей конструкции с инфракрасными или оптическими. Применение фильтров позволяет выделять излучение определенных участков диапазона. Фотоны малых длин волн (меньше 2 000 А) регистрируют уже способами, схожими с регистрацией рентгеновского излучения.

Рентгеновские телескопы.

Фотоны с высокими энергиями, к которым относятся и фотоны рентгеновских волн, уже пробивают всевозможные системы зеркальных объективов. Регистрация таких волн по силам счетчикам элементарных частиц, таким, как счетчик Гейгера. Попадающая в такое устройство частица вызывает кратковременный импульс тока, который и регистрируется. Очень большие проблемы стояли перед астрономами с тем, чтобы при всей сложности процесса регистрации больших потоков рентгеновских фотонов добиться высокого разрешения телескопа. Но сегодня разрешение рентгеновских телескопов достигает уже не несколько градусов, как было раньше, а всего 1’.

Гамма-телескопы.

Гамма-фотоны еще более энергичны, чем фотоны рентгеновского излучения. Их тоже регистрируют специальные устройства-счетчики, только иной конструкции. Увы, разрешение гамма-телескопов не превосходит двух-трех градусов. Гамма-телескопы сегодня регистрируют само наличие и примерное направление на так называемые гамма-вспышки – мощные всплески гамма-излучения, причин которых еще не нашли. Более или менее точно указать место вспышки позволяет одновременное наблюдение вспышки двумя-тремя гамма-телескопами. Совместное использование гамма-телескопов и телескопов, принимающих другие типы излучения, в последние годы помогло отождествлять некоторые гамма-вспышки с тем или иным видимым объектом.

Вверх
Авторство, публикация:

  1. Подготовка и выпуск проект ‘Астрогалактика’ 17.06.2006

На российском рынке оптической техники телескопы занимают не самую широкую нишу, но ассортимент здесь вполне приличный и представлен продукцией многих известных фирм.

Крупные производители предлагают оптику для пользователей разного уровня. Уже появились полноценные серии для новичков и даже недорогие приборы, специально разработанные для детей и подростков.

Предметом же особой гордости именитых брендов по-прежнему остаются телескопы для профессионалов – уже не просто оптические устройства, а высокотехнологичные и «умные» приборы.

Лидерами продаж 2017 года стали любительские и полупрофессиональные телескопы следующих производителей:

  • Sky-Watcher;
  • Celestron;
  • Bresser;
  • Veber.

Принцип работы и устройство телескопа

Телескоп – сложное оптическое устройство, с помощью которого можно видеть отдаленные предметы (астрономические или земные) в многократном увеличении.

Конструктивно он представляет собой трубу, на одном конце которой находится светособирающая линза и/или вогнутое зеркало – объектив. На другом располагается окуляр – через него мы как раз и рассматриваем полученное изображение.

добавить изо моего телескопа с надписями

Также конструкция телескопа включает:

1. Искатель для обнаружения конкретных астрономических объектов;

2. Светофильтры, приглушающие слишком яркое сияние звезд;

3. Диагональные зеркала (корректирующие пластины), переворачивающие картинку, которую объектив передает «вверх ногами».

Профессиональные модели, обладающие возможностями астрофотографирования и видеосъемки, могут дополнительно комплектоваться следующими элементами:

1. Сложная электронная аппаратура;

2. Система GPS;

3. Электродвигатель.

Рефракторы (линзовые)

Узнать такой телескоп можно по его простой конструкции, похожей на подзорную трубу. Объектив и окуляр здесь находятся на одной оси, а увеличенное изображение передается по прямой линии – как и в самых первых приборах, изобретенных 400 лет назад.

Рефракторы, или преломляющие телескопы собирают отраженный свет небесных тел при помощи 2-5 двояковыпуклых линз, разнесенных в оба конца длинной трубы корпуса. Этот тип устройств скорее подойдет новичкам и любителям астронаблюдений, так как позволяет хорошо рассмотреть наземные объекты и небесные тела в пределах нашей Солнечной системы.

Установленные в рефракторах линзы разлагают «пойманный» объективом свет на спектральные составляющие, что приводит к некоторой потере четкости изображения и делает его тусклее при слишком большом увеличении. Пользоваться таким телескопом рекомендуется на открытой местности за чертой города, где засветка неба минимальна.

Плюсы:

  • Просты в эксплуатации и не нуждаются в специализированном обслуживании;
  • Герметичная конструкция защищена от попадания пыли и влаги;
  • Не боятся перепадов температуры;
  • Выдают четкую и контрастную картинку недалеких астрономических тел;
  • Имеют долгий срок службы.

Минусы:

  • Довольно громоздкие и тяжелые (вес некоторых моделей достигает 25 кг);
  • Максимальный диаметр объектива – 150 мм;
  • Не подходит для наблюдений в черте города.

В зависимости от типа установленных линз, телескопы подразделяются на следующие виды:

1. Ахроматические — имеют малые и средние степени увеличения, но дают плоскую картинку.

2. Апохроматические — делают изображение более выпуклым, зато устраняют дефекты вроде расплывчатого контура и проявления вторичного спектра.

Рефлекторы (зеркальные)

Рефлектор улавливает и передает световой луч при помощи двух вогнутых зеркал: одно находится в объективе трубы, другое отражает картинку под углом, отправляя ее на боковой окуляр.

В отличие от рефрактора, такая оптика более приспособлена для изучения глубокого космоса и получения качественного изображения удаленных галактик. Производство зеркал обходится дешевле линз, что отражается и на стоимости приборов. Однако новичку или ребенку будет трудно управиться со сложными настройками и корректорами изображений.

Плюсы:

  • Простота конструкции;
  • Компактные размеры и небольшой вес;
  • Отлично улавливают неяркий свет удаленных космических тел;
  • Большая апертура (от 250 до 400 мм), дающая более яркую и четкую картинку без дефектов;
  • Более низкая цена по сравнению с аналогичными рефракторами.

Минусы:

  • Требуют времени и опыта для настройки;
  • В открытую конструкцию устройства может попасть пыль или грязь;
  • Боятся перепадов температур;
  • Не подходят для наблюдения за наземными и ближайшими объектами Солнечной системы.

Катадиоптрики (зеркально-линзовые)

Объектив катадиоптрических телескопов собран из линз и зеркал, поэтому он сочетает в себе их достоинства и максимально компенсирует дефекты при помощи специальных коррекционных пластин.

Изображение как далеких, так и близких астрономических объектов в таком приборе приближается к идеалу, что позволяет не только наблюдать за звездами, но и делать качественные снимки.

Плюсы:

  • Компактные габариты и транспортабельность;
  • Одинаково хорошо подходят для наблюдений за объектами дальнего и ближнего космоса;
  • Дают самое качественное изображение;
  • Апертура до 400 мм.

Минусы:

  • Высокая стоимость;
  • Длительное время термостабилизации воздуха внутри трубы;
  • Сложная конструкция.

Параметры выбора телескопа

Решившись на покупку телескопа, следует определиться с вашими основными требованиями к этому прибору.

Конструкция и характеристики оптики будут зависеть от ваших ответов на ряд вопросов:

1. Какие именно объекты вам хотелось бы рассматривать – планеты в пределах нашей Солнечной системы или далекие галактики?

2. Откуда вы будете наблюдать за космическими телами – со своего балкона у вас есть возможность выезжать с телескопом в поле?

3. Планируете ли вы заниматься астрофотографией?

Теперь перейдем к основным характеристикам современных телескопов.

Параболическое или сферическое зеркало

Конструкция сферического зеркала такова, что оно не может отразить все лучи в одну точку. Из-за этого для рефлекторов со сферической оптикой недостижим идеально резкий фокус. Это явление носит название «сферической аберрации» и проявляется сильнее всего на высоких увеличениях.

Параболическое зеркало не подвержено сферическим аберрациям и способно собирать световые лучи в одну точку. На большой кратности у вас не возникнет никаких проблем с фокусировкой, и удаленный объект будет виден четко и во всех деталях.

Но не все так плохо и со сферическими зеркалами. При определенном соотношении между диаметром зеркала и фокусным расстоянием такое зеркало работает практически как параболическое. Телескоп с зеркалом диаметром 114 мм и фокусным расстоянием в 900 мм практически лишен сферических аберраций и хорошо фокусирует изображение вплоть до значения максимально полезного увеличения.

Апертура (диаметр объектива)

Главный критерий выбора телескопа – апертура его объектива. Она определяет способность линзы или зеркала собирать свет: чем выше эта характеристика, тем больше отраженных лучей попадет в объектив. А значит, он даст высокое качество изображения и даже сможет уловить слабое отраженное излучение отдаленных космических объектов.

При выборе апертуры под свои цели ориентируйтесь на такие цифры:

1. Для получения четкой картинки недалеких планет или спутников хватит прибора с диаметром объектива до 150 мм. В условиях города лучше уменьшить этот показатель до 70-90 мм.

2. Разглядеть отдаленные галактики сможет устройство с апертурой свыше 200 мм.

3. Если вы планируете предаваться любимому хобби в отдаленных от города местах с малозасвеченным ночным небом, можете попробовать максимальную величину полупрофессиональных линз – до 400 мм.

Фокусное расстояние

Фокусным называют расстояние от объектива до точки в окуляре, где все световые лучи снова собираются в пучок. От этого показателя зависит степень увеличения и качество видимого изображения – чем он выше, тем лучше мы рассмотрим интересующий объект.

Фокус увеличивает длину самого телескопа, что отражается на удобстве его хранения и перевозки. Конечно, на балконе удобнее держать короткофокусный прибор, где F не превышает 500-800 мм. Это ограничение не касается только катадиоптриков – в них световой поток многократно преломляется, а не идет по прямой, что позволяет значительно укоротить корпус.

Кратность увеличения

Этот показатель можно рассчитать делением фокусного расстояния на ту же характеристику вашего окуляра. Если F телескопа составляет 800 мм, а у окуляра оно равно 16, значит, оптика даст вам 50-кратное приближение.

Увеличение объектов можно корректировать, поставив более мощный или слабый окуляр – сегодня производители предлагают оптику с F от 4 до 40 мм, а также линзы Барлоу, удваивающие фокус самого телескопа.

1. Детально есть смысл рассматривать только близкие космические тела (Луну, например).

2. Для наблюдения за далекими галактиками высокая кратность увеличения не столь важна.

Тип монтировки

Монтировка (подставка для телескопа) необходима для того, чтобы прибором было удобно пользоваться.

В комплекте с любительской и полупрофессиональной оптикой обычно идет один из 3 основных видов специальных подвижных опор:

1. Азимутальная – самая простая подставка, позволяющая смещать телескоп по горизонтали и вертикали. Чаще всего ею комплектуются рефракторы и небольшие катадиоптрики. А вот для астрофотографирования азимутальная монтировка не годится, поскольку не позволяет поймать четкую картинку.

2. Экваториальная – обладает внушительным весом и габаритами, зато помогает найти необходимый объект по заданным координатам. Такая тренога идеальна для рефлекторов, которые «видят» удаленные галактики, неразличимые невооруженным взглядом. Экваториалка популярна и в среде поклонников астрофотографии.

3. Система Добсона – некий компромисс между простой в использовании и дешевой азимутальной подставкой и надежной экваториальной конструкцией. Зачастую идет в комплекте с мощными и дорогими рефлекторами.

Оптическая схема

Телескоп Галилея (1609)

Простая конструкция телескопа, аналогичная использованной Галилеем в первых астрономических двухлинзовых телескопах. Длиннофокусная собирательная (выпуклая) линза играет роль объектива, а другая (вогнутая) линза — окуляра; в результате получается прямое изображение. Такая система все еще используется в театральных биноклях.

Телескоп Кеплера (1611)

Простая система устройства телескопа, в которой в качестве как объектива, так и окуляра используются выпуклые линзы. Это дает большее поле зрения и более высокую степень увеличения, чем можно получить в галилеевском телескопе, но изображение в кеплеровском телескопе перевернуто.

Телескоп системы Грегори (1663)

Тип отражательного телескопа, предложенный Джеймсом Грегори в 1663 г. Первичное зеркало — параболоид с центральным отверстием, а вторичное — эллипсоид. Грегори не удалось получить зеркала нужной конфигурации, поэтому он не смог построить свой телескоп до того, как Ньютон создал свой первый рефлектор более простой конструкции с плоским вторичным зеркалом. Впоследствии система Грегори была вытеснена кассегреновским телескопом

Телескоп Ньютона (1668)

Простой тип отражательного телескопа, разработанный Исааком Ньютоном (1642- 1727), который продемонстрировал его в Королевском Обществе в Лондоне в 1671 г. Первичное зеркало телескопа представляет собой параболоид (для небольших апертур можно использовать сферическое зеркало), а вторичное зеркало — плоское, помещенное на пути отраженного луча под углом 45° к оптической оси, так что изображение образуется вне главной трубы. Конструкция широко используется для небольших любительских инструментов, но для больших телескопов не подходит.

Схема Кассегрена (1672)

Телескоп-рефлектор, в котором фокус изображения находится непосредственно за центральным отверстием в первичном зеркале. Такая конструкция была предложена Жаком Кассегреном (1652-1712), профессором физики в городе Шартре во Франции около 1672 г., т.е. через четыре года после того, как Иссак Ньютон создал первый рефлектор. В этом телескопе вторичное зеркало выпуклое, а не плоское (как в ньютоновской конструкции). Сам Кассегрен телескопа не построил, так что прошло несколько лет до того, как его идея была осуществлена. Сегодня кассегреновский фокус популярен и широко используется как в скромных любительских приборах, так и в больших профессиональных телескопах.

Телескоп Гершеля (1772)

Тип телескопа-рефлектора, сконструированного Уильямом Гершелем (1738- 1822), в котором параболическое первичное зеркало наклонено так, что фокус лежит вне главной трубы телескопа и доступ к нему можно получить, не заслоняя поступающий свет. Эта идея была на 10 лет раньше воплощена в жизнь Ломоносовым. Недостатком системы является наличие искажений, почему этот тип телескопа и был впоследствии заменен другими системами рефлекторов.

Телескоп Ричи-Кретьена (1922)

Телескоп, оптическая система которого подобна системе кассегреновского телескопа за исключением того, что как первичное, так и вторичное зеркала имеют форму гиперболоида. В результате телескоп Ричи-Кретьена обеспечивает широкое поле зрения при отсутствии комы.

Система Серюрье (1930)

Конструкция открытой трубы большого отражательного телескопа, обеспечивающая равномерность прогиба при изменении ориентации телескопа. Сделать трубу самых больших телескопов полностью недеформируемой невозможно. Предложенная Марком Серюрье конструкция 200-дюймовой трубы Телескопа Хейла не устраняет деформацию, но обеспечивает сохранение оптической оси телескопа

Камера Шмидта (1930)

Тип астрономического телескопа с широким полем зрения, предназначенный исключительно для фотографического использования. Он был изобретен Бернардом Шмидтом в 1930 г. Роль коллектора света выполняет сферическое зеркало. Коррекция сферической аберрации осуществляется с помощью тонкой стеклянной пластины сложного профиля, установленной у входного конца телескопической трубы (за фокусом). Фотопластинка помещается в первичном фокусе. Поскольку фокальная поверхность изогнута, фотопластинке придается та же форма при помощи специального держателя. В результате получаются резкие неискаженные изображения очень широкого поля зрения — до десятков градусов в поперечнике.

Телескоп Дэлла-Киркхэма

Разновидность кассегреновского телескопа, в котором первичное зеркало имеет эллипсоидный профиль, а не более обычный параболоидный. Вторичное зеркало — сферическое. В результате поле зрения оказывается значительно меньшим, чем у стандартного кассегреновского телескопа того же размера.

Телескоп Максутова (1940)

Отражательный телескоп, в котором оптические искажения сферического первичного зеркала исправляются вогнутой линзой (мениском), что обеспечивает высококачественное изображение при широком поле зрения. Телескоп был изобретен Д.Д. Максутовым (1896-1964).

Основная конструкция телескопа — типичная кассегреновская система. Небольшое вторичное зеркало установлено сзади корректирующей линзы, а изображение формируется непосредственно позади первичного зеркала, которое имеет небольшое центральное отверстие.

Трудность создания больших корректирующих линз ограничивает профессиональное применение такого телескопа, но телескопы Максутова, имеющие компактную трубу и широкое поле зрения при низком фокусном отношении, популярны у астрономов-любителей.

В зависимости от направления выходного пучка различаются модификации этой системы: Максутова-Кассегрена и Максутова-Ньютона.

Телескоп Шмидта-Кассегрена (1940, 1942)

Конструкция оптического телескопа, сочетающая черты камеры Шмидта и кассегреновского рефлектора. Предложена Д.Д. Бейкером (1940) и Ч.Р. Бёрч (1942).

В этом телескопе используется сферическое первичное зеркало и корректирующая пластина для компенсации сферической аберрации, как и в камере Шмидта. Однако держатель фотопластинки в первичном фокусе заменен небольшим выпуклым вторичным зеркалом, которое отражает свет назад в трубу через отверстие в первичном зеркале. В результате можно либо рассматривать изображение визуально или установить камеру в главной трубе за первичным зеркалом.

Телескоп такой конструкции оказывается очень компактным, что особенно важно для портативных телескопов и телескопов любительского и общеобразовательного назначения.

Система Пола-Бейкера (1935, 1945)

Оптическая конструкция отражательного телескопа, имеющего исключительно широкое поле зрения с хорошим разрешением. В ней используется параболическое первичное зеркало с фокусным отношением f/4 или меньше, выпуклое сферическое вторичное зеркало и вогнутое сферическое третье зеркало, кривизна которого равна, но по знаку противоположна кривизне вторичного. Конструкция была предложена французским оптиком Морисом Полом в 1935 г. и независимо от него Джеймсом Бейкером около 1945 г.

Камера Бейкера-Нанна (1957)

Разновидность камеры Шмидта, разработанная для фотографирования искусственных спутников Земли.

Система Бейкера-Шмидта

Модификация камеры Шмидта, в которой использованы предложенные Дж.Г.Бейкером технические средства, устраняющие аберрацию и дисторсию.

Телескоп Уиллстропа

Конструкция отражательных оптических телескопов, обеспечивающих хорошие изображения при поле зрения в 5° или больше. Конструкция представляет собой модифицированный вариант системы Пола- Бейкера. Отверстие в первичном зеркале имеет диаметр, составляющий 60% от диаметра всего зеркала, и в этом отверстии лежит фокус. Форма всех трех зеркал существенно отличается от параболической или сферической. Преимущество конструкции Уиллстропа состоят в том, что телескоп намного более компактен, чем камера Шмидта. Кроме того, в нем не возникают мнимые изображения, вызванные внутренними отражениями, как в корректирующей линзе камеры Шмидта. Эта конструкция позволяет построить телескоп, который был бы мощнее любой из существующих камер Шмидта.

Телескоп Добсона (1960-1970-е гг.)

Недорогой телескоп-рефлектор с большой апертурой и простой неуправляемой альтазимутальной установкой. Его конструкция удобна для астрономов-любителей, причем особенно важна его портативность. Телескоп носит имя автора концепции и первых разработок, проводившихся в 1960-1970-х гг., Джона Добсона из Сан-Францисского общества астрономов-любителей. Клееная деревянная труба телескопа крепится в коробке, которая установлена на опорной плите и может вращаться вокруг вертикальной оси. Полукруглая скоба с упорами в верхней части коробки имеет цапфы, присоединенные к противоположным сторонам трубы. Чтобы движение вокруг обеих осей было ровным, используется тефлон. Добсону удалось показать также, что из листового стекла (которое тоньше обычно используемого зеркального) можно сделать недорогое большое зеркало хорошего качества. Чтобы избежать искажений, тонкое зеркало должно свободно лежать на ковровой или резиновой подкладке.

Телескопы Галилея

В 1609, узнав об изобретении голландскими оптиками зрительной трубы, Галилей самостоятельно изготовил телескоп с плосковыпуклым объективом и плосковогнутым окуляром, который давал трехкратное увеличение. Через некоторое время им были изготовлены телескопы с 8- и 30-кратным увеличением.

В 1609, начав наблюдения с помощью телескопа, Галилей обнаружил на Луне темные пятна, названные им морями, горы и горные цепи. 7 января 1610 открыл четыре спутника планеты Юпитер, установил, что Млечный Путь является скоплением звезд. Эти открытия описаны им в сочинении «Звездный вестник, открывающий великие и в высшей степени удивительные зрелища…» (вышел в свет 12 марта 1610).

Разрешающая сила (разрешение) телескопа

Этот параметр характеризует способность телескопа различать мелкие детали у протяженных объектов (например, на дисках Луны и планет) и разделять близко расположенные точечные объекты — звезды. Разрешение напрямую зависит от диаметра объектива телескопа: если апертуру увеличить вдвое, то разрешающая сила также увеличится в два раза.

Второй фактор, влияющий на разрешение — это качество линз и зеркальных поверхностей. Ошибки изготовления оптики, неправильная сборка и юстировка, дефекты стекла, царапины, пыль и грязь на поверхности оптических элементов — все это становится источником ухудшения разрешающей силы телескопа.

При наблюдениях протяженных объектов, таких как Луна и планеты, вместе с увеличением телескопа растет видимый размер изображения. В отличие от них, точечные объекты (звезды) при больших увеличениях принимают вид дисков, окруженных несколькими концентрическими кольцами уменьшающейся яркости. Подобная картина, именуемая дифракционной, обусловлена волновой природой света. Диаметр центрального диска, называемого кружком Эри, обратно пропорционален апертуре телескопа.

Поскольку настоящее изображение звезды тонет в кружке Эри, на практике разделение тесной двойной звезды сводится к рассматриванию дифракционной картины системы в попытках различить диски Эри двух тесно расположенных звезд. Если принять, что оба компонента двойной системы имеют одинаковый блеск, то минимальное угловое расстояние (в секундах дуги), на котором эти звезды все еще можно будет разделить в данный телескоп, рассчитывается по формуле: 116″/D, где D — диаметр объектива телескопа в миллиметрах. Эта формула разрешающей силы называется пределом Дауэса, по фамилии английского астронома, получившего ее в XIX веке. Теоретические значения разрешающей силы для телескопов разных диаметров приведены в сводной таблице.

Проницающая сила телескопа

Это минимальная звездная величина звезд, туманностей, галактик, которую можно различить с помощью данного телескопа.

Проницающая сила телескопа зависит от двух показателей:

Астроклимат. Это комплекс следующих характеристик атмосферы: сила ветра, перепады температуры и влажности воздуха, прозрачность атмосферы и другое.

Место установки телескопа так же одно из важнейших условий, влияющих на проницающую способность телескопов. Если установить телескоп в низменной местности, скажем на уровне моря или ниже его, то проницающая способность будет весьма низкой. Чем выше местность, на которой установлен телескоп, тем выше будет его проницающая способность.

Проницающая способность телескопа характеризуется предельной звездной величиной слабейших звезд, которые можно увидеть в данный инструмент в условиях идеально темного неба. Предельную звездную величину (m) для телескопа, диаметр объектива которого равен D в миллиметрах, можно приблизительно оценить по следующей формуле: m = 2,5 + 5 lg D.

Просветление оптики позволяет повысить проницающую способность телескопа, тогда как пыль и грязь на оптике — понижает ее.

Светосила телескопа

Этот параметр характеризуется отношением диаметра объектива к его фокусному расстоянию (D/f). Эта величина называется относительным отверстием и записывается в виде дроби: 1:5, 1:7, 1:10, 1:15… В англоязычной литературе чаще используется обратная величина — относительное фокусное расстояние (f/D), которое также записывается в виде дроби: f/5, f/7, f/10, f/15… Чем больше относительное отверстие объектива телескопа (или наоборот: чем меньше отношение фокусного расстояния к диаметру объектива), тем выше его светосила.

Светосила телескопа, прежде всего, важна для определения его пригодности для фотографических целей — более светосильный инструмент позволит делать более короткие выдержки при фотографировании слабых астрономических объектов. Другим плюсом светосильных инструментов является большая компактность по сравнению с обычными инструментами (за счет более короткого фокуса), кроме того, они более приспособлены для наблюдений с малыми увеличениями (по той же причине). С другой стороны, светосильные инструменты сложнее в изготовлении и юстировке, и они в большей мере подвержены влиянию различных оптических аберраций.

Диаметр объектива, мм Диапазон увеличений, крат Разрешающая способность, « Проницающая способность, зв. вел.
60 10 — 120 1.93 11.4
70 12 — 140 1.66 11.7
80 13 — 160 1.45 12
90 15 — 180 1.29 12.3
100 17 — 200 1.16 12.5
110 18 — 220 1.05 12.7
120 20 — 240 0.97 12.9
130 22 — 260 0.89 13.1
150 25 — 300 0.77 13.4
200 33 — 400 0.58 14
250 42 — 500 0.46 14.5
300 50 — 600 0.39 14.9

Какой телескоп выбрать

  1. Школьнику 8-10 лет, интересующемуся звездами, можно подарить недорогой и простой в управлении телескоп-рефрактор из специальной детской серии с апертурой от 70 мм на азимутальной монтировке. А дополнительный адаптер под фотоаппарат позволит ему сделать красивые снимки Луны и наземных объектов.
  2. Начинающему исследователю ночного неба, проживающего в городе, лучше купить короткофокусный рефрактор с апертурой 70-90 мм на азимутальной подставке. Если есть возможность наблюдать звезды где-нибудь «в поле», можно раскошелиться на рефлектор 110-250 мм с монтировкой Добсона в комплекте.
  3. Если вашей мечтой является изучение отдаленных галактик и туманностей, приобретите рефлектор с диаметром объектива от 250 мм, укомплектованный азимутальной подставкой.
  4. Путешественникам или тем, кто собирается часто перевозить свой телескоп, понадобится легкий и надежный зеркально-линзовый аппарат, оснащенный системой Добсона или азимутальной подставкой.
  5. Опытным астрофотографам не обойтись без катадиоптрического телескопа с максимальной апертурой (400 мм) и длинным фокусом от 1000 мм. Монтировку лучше выбрать экваториальную с автоматическим приводом.

Сколько стоит телескоп

1. Рефрактор на азимутальной монтировке можно приобрести по цене от 3500 до 25000 руб. Стоимость будет зависеть от технических характеристик оптики и функционала прибора.

2. Зеркальный рефлектор на экваториальной подставке обойдется вам в сумму от 14 до 55 тыс. руб.

3. За профессиональный и мощный катадиоптрик придется отдать 18-130 тысяч.

Вам также может понравиться

Об авторе admin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *